|   | 
Details
   web
Records
Author Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A.
Title Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture Type A1 Journal article
Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000492999000001 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited 5 Open Access OpenAccess
Notes The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160118 Serial 5180
Permanent link to this record
 

 
Author Morozov, V.A.; Posokhova, S.M.; Deyneko, D., V; Savina, A.A.; Morozov, A., V; Tyablikov, O.A.; Redkin, B.S.; Spassky, D.A.; Hadermann, J.; Lazoryak, B., I
Title Influence of annealing conditions on the structure and luminescence properties of KGd1-xEux(MoO4)2(0\leq x\leq1) Type A1 Journal article
Year 2019 Publication CrystEngComm Abbreviated Journal Crystengcomm
Volume 21 Issue 42 Pages 6460-6471
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study describes the influence of annealing temperature on the structure and luminescence properties of KGd1-xEux(MoO4)(2) (0 <= x <= 1). Compounds with the general formula (A ', A '')(n)[(W, Mo)O-4](m) are investigated as luminescent materials for photonic applications such as phosphor-converted LEDs (light-emitting diodes). Herein, the KGd0.8Eu0.2(MoO4)(2) light-rose crystal was grown by the Czochralski technique. Moreover, three polymorphs of KGd1-xEux(MoO4)(2) were present in the 923-1223 K range of annealing temperatures under ambient pressure: a triclinic alpha-phase, a disproportionately modulated monoclinic beta-phase and an orthorhombic gamma-phase with a KY(MoO4)(2)-type structure. The different behaviors of KGd(MoO4)(2) and KEu(MoO4)(2) were revealed by DSC studies. The number and the character of phase transitions for KGd1-xEux(MoO4)(2) depended on the elemental composition. The formation of a continuous range of solid solutions with the triclinic alpha-KEu(MoO4)(2)-type structure and ordering of K+ and Eu3+/Gd3+ cations were observed only for alpha-KGd1-xEux(MoO4)(2) (0 <= x <= 1) prepared at 923 K. The structures of gamma-KGd1-xEux(MoO4)(2) (x = 0 and 0.2) were studied using electron diffraction and refined using the powder X-ray diffraction data. The luminescence properties of KGd1-xEux(MoO4)(2) prepared at different annealing temperatures were studied and related to their different structures. The maxima of the D-5(0) -> F-7(2) integral emission intensities were found under excitation at lambda(ex) = 300 nm and lambda(ex) = 395 nm for triclinic scheelite-type alpha-KGd0.6Eu0.4(MoO4)(2) and monoclinic scheelite-type beta-KGd0.4Eu0.6(MoO4)(2) prepared at 1173 K, respectively. The latter shows the brightest red light emission among the KGd1-xEux(MoO4)(2) phosphors. The maximum and integral emission intensity of beta-KGd0.4Eu0.6(MoO4)(2) in the D-5(0) -> F-7(2) transition region is similar to 20% higher than that of the commercially used red phosphor Gd2O2S:Eu3+. Thus, beta-KGd0.4Eu0.6(MoO4)(2) is very attractive for application as a near-UV convertible red-emitting phosphor for LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000493072200015 Publication Date 2019-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.474 Times cited Open Access
Notes Approved Most recent IF: 3.474
Call Number UA @ admin @ c:irua:164603 Serial 6304
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; You, F.; Van Passel, S.
Title A multi-objective optimization-extended techno-economic assessment : exploring the optimal microalgal-based value chain Type A1 Journal article
Year 2019 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 21 Issue 21 Pages 5945-5959
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract The use of fossil-based products induces a large environmental burden. To lighten this burden, green technologies are required that can replace their fossil-based counterparts. To enable the development of economically viable green technologies, an optimization towards both economic and environmental objectives is required. To perform this multi-objective optimization (MOO), the environmental techno-economic assessment (ETEA) methodology is extended towards a MOO-extended ETEA. The development of this MOO-extended ETEA is the main objective of this manuscript. As an example of a green technology, the concept of microalgae biorefineries is used as a case study to illustrate the MOO-extended ETEA. According to the results, all optimal value chains include open pond cultivation, a membrane for medium recycling and spray drying. The optimal economic value chain uses Nannochloropsis sp. in a one-stage cultivation to produce fish larvae feed, while the optimal environmental design uses Dunaliella salina or Haematococcus pluvialis to produce carotenoids and fertilizer or energy products, by means of anaerobic digestion or gasification. The crucial parameters for both environmental and economic feasibility are the content, price and reference impact of the main end product, the growth parameters and the biomass and carotenoid recovery efficiency alongside the different process steps. By identifying the economic and environmentally optimal algal-based value chain and the crucial drivers, the MOO-extended ETEA provides insights on how algae-based value chains can be developed in the most economic and environmentally-friendly way. For example, the inclusion of a medium recycling step to lower the water and salt consumption is required in all Pareto-optimal scenarios. Another major insight is the requirement of high-value products such as carotenoids or specialty food to obtain and economically and environmentally feasible algal-based value chain. Due to the modular nature of the MOO-extended ETEA, multiple processes can be included or excluded from the superstructure. Although this case study is limited to current microalgae biorefinery technologies, the MOO-extended ETEA can also be used to assess the economic and environmental effect of more innovative technologies. This way, the MOO-extended ETEA provides a methodology to assess the economic and environmental potential of innovative green technologies and shorten their time-to-market.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000493077100016 Publication Date 2019-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:164296 Serial 6230
Permanent link to this record
 

 
Author Buyle, M.; Audenaert, A.; Billen, P.; Boonen, K.; Van Passel, S.
Title The future of Ex-Ante LCA? Lessons learned and practical recommendations Type A1 Journal article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 11 Issue 19 Pages 5456
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Biochemical Wastewater Valorization & Engineering (BioWaVE); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Every decision-oriented life cycle assessment (LCAs) entails, at least to some extent, a future-oriented feature. However, apart from the ex-ante LCAs, the majority of LCA studies are retrospective in nature and do not explicitly account for possible future effects. In this review a generic theoretical framework is proposed as a guideline for ex-ante LCA. This framework includes the entire technology life cycle, from the early design phase up to continuous improvements of mature technologies, including their market penetration. The compatibility with commonly applied system models yields an additional aspect of the framework. Practical methods and procedures are categorised, based on how they incorporate future-oriented features in LCA. The results indicate that most of the ex-ante LCAs focus on emerging technologies that have already gone through some research cycles within narrowly defined system boundaries. There is a lack of attention given to technologies that are at a very early development stage, when all options are still open and can be explored at a low cost. It is also acknowledged that technological learning impacts the financial and environmental performance of mature production systems. Once technologies are entering the market, shifts in market composition can lead to substantial changes in environmental performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000493525500315 Publication Date 2019-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited 4 Open Access
Notes ; Thanks to Koen Breemersch for providing insightful and useful comments on draft versions of this manuscript. This work was supported by the University of Antwerp and the Flemish Institute for Technological Research (VITO). The authors also acknowledge anonymous reviewers for the constructive suggestions and the stimulating discussion. ; Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:162571 Serial 6205
Permanent link to this record
 

 
Author Christiaens, M.E.R.; De Paepe, J.; Ilgrande, C.; De Vrieze, J.; Barys, J.; Teirlinck, P.; Meerbergen, K.; Lievens, B.; Boon, N.; Clauwaert, P.; Vlaeminck, S.E.
Title Urine nitrification with a synthetic microbial community Type A1 Journal article
Year 2019 Publication Systematic and applied microbiology Abbreviated Journal
Volume 42 Issue 6 Pages Unsp 126021
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract During long-term extra-terrestrial missions, food is limited and waste is generated. By recycling valuable nutrients from this waste via regenerative life support systems, food can be produced in space. Astronauts' urine can, for instance, be nitrified by micro-organisms into a liquid nitrate fertilizer for plant growth in space. Due to stringent conditions in space, microbial communities need to be be defined (gnotobiotic); therefore, synthetic rather than mixed microbial communities are preferred. For urine nitrification, synthetic communities face challenges, such as from salinity, ureolysis, and organics. In this study, a synthetic microbial community containing an AOB (Nitrosomonas europaea), NOB (Nitrobacter winogradskyi), and three ureolytic heterotrophs (Pseudomonas fluorescens, Acidovorax delafieldii, and Delftia acidovorans) was compiled and evaluated for these challenges. In reactor 1, salt adaptation of the ammonium-fed AOB and NOB co-culture was possible up to 45 mS cm(-1), which resembled undiluted nitrified urine, while maintaining a 44 +/- 10 mg NH4+-N L-1 d(-1) removal rate. In reactor 2, the nitrifiers and ureolytic heterotrophs were fed with urine and achieved a 15 +/- 6 mg NO3--N L-1 d(-1) production rate for 1% and 10% synthetic and fresh real urine, respectively. Batch activity tests with this community using fresh real urine even reached 29 +/- 3 mg N L-1 d(-1). Organics removal in the reactor (69 +/- 15%) should be optimized to generate a nitrate fertilizer for future space applications. (C) 2019 Elsevier GmbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000494650600006 Publication Date 2019-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0723-2020; 1618-0984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164650 Serial 8717
Permanent link to this record
 

 
Author Jin, L.; Batuk, M.; Kirschner, F.K.K.; Lang, F.; Blundell, S.J.; Hadermann, J.; Hayward, M.A.
Title Exsolution of SrO during the Topochemical Conversion of LaSr3CoRuO8to the Oxyhydride LaSr3CoRuO4H4 Type A1 Journal article
Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 58 Issue 21 Pages 14863-14870
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via topochemical anion-exchange. Close inspection of X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n ‘perovskite’ layers into the Ruddlesden-Popper stacking sequence. This novel pseudo-topochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co1+Ru2+O4H4 (Co1+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and μ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic exchange interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000494894400062 Publication Date 2019-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 1 Open Access
Notes We thank P. Manuel for assistance collecting the neutron powder diffraction data. We thank The Leverhulme Trust grant award RPG-2014-366 “Topochemical reduction of 4d and 5d transition metal oxides” for supporting this work. Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Investigation by TEM was supported through the FWO grant G035619N. Approved Most recent IF: 4.857
Call Number EMAT @ emat @c:irua:164625 Serial 5434
Permanent link to this record
 

 
Author Billet, J.; Vandewalle, S.; Meire, M.; Blommaerts, N.; Lommens, P.; Verbruggen, S.W.; De Buysser, K.; Du Prez, F.; Van Driesche, I.
Title Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation Type A1 Journal article
Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 55 Issue 55 Pages 1933-1945
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000494929300001 Publication Date 2019-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 2 Open Access
Notes ; Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO<INF>2</INF> powders, Jeroen Kint for the porosiellipsometry tests and Frank Driessen for the MALDI-TOF analysis. ; Approved Most recent IF: 2.599
Call Number UA @ admin @ c:irua:163842 Serial 5969
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R.
Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
Year 2019 Publication Small Abbreviated Journal Small
Volume Issue Pages 1904738
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000495563400001 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 2 Open Access
Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:164059 Serial 5376
Permanent link to this record
 

 
Author Van Nijen, K.; Van Passel, S.; Brown, C.G.; Lodge, M.W.; Segerson, K.; Squires, D.
Title The development of a payment regime for deep sea mining activities in the area through stakeholder participation Type A1 Journal article
Year 2019 Publication International Journal Of Marine And Coastal Law Abbreviated Journal Int J Mar Coast Law
Volume 34 Issue 4 Pages 571-601
Keywords A1 Journal article; Economics; Law; Engineering Management (ENM)
Abstract In July 2015, the Council of the International Seabed Authority (ISA) adopted seven priority deliverables for the development of the exploitation code. The first priority was the development of a zero draft of the exploitation regulations. This article focusses on the second priority deliverable, namely the development of a payment mechanism for exploitation activities, following detailed financial and economic models based on proposed business plans. Between 2015 and 2017, five workshops have been organised with 196 active participants from 34 countries. The results so far are synthesised, drawing upon the outcome of these workshops, ISA technical papers, and the scholarly literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000496420700002 Publication Date 2019-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-3522 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.362 Times cited Open Access
Notes ; ; Approved Most recent IF: 0.362
Call Number UA @ admin @ c:irua:164294 Serial 6181
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Van Loon, J.; Du Bois, E.; De Wael, K.; Moretto, L.M.
Title Disposable electrodes from waste materials and renewable sources for (bio) electroanalytical applications Type A1 Journal article
Year 2019 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron
Volume 146 Issue 146 Pages 111758
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development
Abstract The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000497250600003 Publication Date 2019-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.78 Times cited 2 Open Access
Notes ; This research received funding from FWO and IOF (UAntwerpen). ; Approved Most recent IF: 7.78
Call Number UA @ admin @ c:irua:164563 Serial 5578
Permanent link to this record
 

 
Author Moro, G.; Cristofori, D.; Bottari, F.; Cattaruzza, E.; De Wael, K.; Moretto, L.M.
Title Redesigning an electrochemical MIP sensor for PFOS : practicalities and pitfalls Type A1 Journal article
Year 2019 Publication Sensors Abbreviated Journal Sensors-Basel
Volume 19 Issue 20 Pages 4433
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract There is a growing interest in the technological transfer of highly performing electrochemical sensors within portable analytical devices for the in situ monitoring of environmental contaminants, such as perfluorooctanesulfonic acid (PFOS). In the redesign of biomimetic sensors, many parameters should be taken into account from the working conditions to the electrode surface roughness. A complete characterization of the surface modifiers can help to avoid time-consuming optimizations and better interpret the sensor responses. In the present study, a molecularly imprinted polymer electrochemical sensor (MIP) for PFOS optimized on gold disk electrodes was redesigned on commercial gold screen-printed electrodes. However, its performance investigated by differential pulse voltammetry was found to be poor. Before proceeding with further optimization, a morphological study of the bare and modified electrode surfaces was carried out by scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDS), atomic force microscopy (AFM) and profilometry revealing an heterogeneous distribution of the polymer strongly influenced by the electrode roughness. The high content of fluorine of the target-template molecule allowed to map the distribution of the molecularly imprinted polymer before the template removal and to define a characterization protocol. This case study shows the importance of a multi-analytical characterization approach and identify significant parameters to be considered in similar redesigning studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000497864700081 Publication Date 2019-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.677 Times cited Open Access
Notes ; ; Approved Most recent IF: 2.677
Call Number UA @ admin @ c:irua:164686 Serial 5808
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D.
Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 115 Issue 20 Pages 202105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000498619400007 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 2 Open Access
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:165135 Serial 6291
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect-directed growth of symmetrically branched metal nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 59 Issue 59 Pages 943-950
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near-field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single-crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000498760200001 Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 23 Open Access OpenAccess
Notes ; The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi), Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Structure Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding to S.E.S. from the U.S. National Science Foundation (award numbers: 1602476 and 1904499) and Research Corporation for Scientific Advancement (2017 Frontiers in Research Excellence and Discovery Award) as well as to S.B. from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). ; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:165124 Serial 6293
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E.
Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 10 Pages 1597
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000498826000194 Publication Date 2019-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436
Permanent link to this record
 

 
Author Xue, C.; He, A.; Milošević, M.V.; Silhanek, A., V; Zhou, Y.-H.
Title Open circuit voltage generated by dragging superconducting vortices with a dynamic pinning potential Type A1 Journal article
Year 2019 Publication New journal of physics Abbreviated Journal New J Phys
Volume 21 Issue 11 Pages 113044
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate, through Ginzburg?Landau simulations, the possibility to induce an open circuit voltage in absence of applied current, by dragging superconducting vortices with a dynamic pinning array as for instance that created by a nearby sliding vortex lattice or moving laser spots. Different dynamic regimes, such as synchronous vortex motion or dynamic vortex chains consisting of laggard vortices, can be observed by varying the velocity of the sliding pinning potential and the applied magnetic field. Additionally, due to the edge barrier, significantly different induced voltage is found depending on whether the vortices are dragged along the superconducting strip or perpendicular to the lateral edges. The output voltage in the proposed mesoscopic superconducting dynamo can be tuned by varying size, density and directions of the sliding pinning potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000498853700001 Publication Date 2019-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 6 Open Access
Notes Approved Most recent IF: 3.786
Call Number UA @ admin @ c:irua:165158 Serial 6317
Permanent link to this record
 

 
Author Hinterding, S.O.M.; Berends, A.C.; Kurttepeli, M.; Moret, M.-E.; Meeldijk, J.D.; Bals, S.; van der Stam, W.; de Donega, C.M.
Title Tailoring Cu+ for Ga3+ cation exchange in Cu2-xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry Type A1 Journal article
Year 2019 Publication ACS nano Abbreviated Journal Acs Nano
Volume 13 Issue 13 Pages 12880-12893
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S-2 nanocrystals, which increases the photoluminescence quantum yield 10 -fold, while blue -shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000500650000061 Publication Date 2019-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 27 Open Access OpenAccess
Notes ; S.O.M.H., W.v.d.S., A.C.B., and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Nos. ECHO.712.012.0001 and ECHO.712.014.001. S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant No. 815128-REALNANO). S.O.M.H. is supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. DFT calculations were carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. This work was sponsored by NWO Physical Sciences for the use of supercomputer facilities. The authors thank Jessi van der Hoeven for EDS and TEM measurements. ; sygma Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:165149 Serial 6324
Permanent link to this record
 

 
Author Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K.
Title X-ray diffraction mapping for cultural heritage science : a review of experimental configurations and applications Type A1 Journal article
Year 2019 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 26 Issue 26 Pages 1703-1719
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (mu XRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000501927300001 Publication Date 2019-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited Open Access
Notes ; M.C. thanks the KNAW for supporting her stays in the Netherlands through the Descartes Huygens price. V.G. and M.C. thank the Center of Research and Restoration of French Museums (C2RMF), Paris and in particular Myriam Eveno, for the collaboration on Rembrandt's impastos (Figure 7). M.C. is indebted to the Afghan government, NRICPT and in particular, Yoko Taniguchi for providing samples shown in Figure 5. K.J. and F.V. acknowledge the University of Antwerp Research Council for financial support via GOA project SolarPaint as well as InterReg project Smart*Light. FWO projects G057419N and G056619N are also acknowledged. The authors also wish to acknowledge the Van Gogh and Kroller-Muller museums, the Rijksmuseum, the Royal Museum of Fine Arts Antwerp and the Louvre museum for the constructive and inspiring collaborations in the past decade. Various beam lines and the staff at ESRF and DESY are thanked for providing beam time and support during experiments. ; Approved Most recent IF: 5.317
Call Number UA @ admin @ c:irua:165061 Serial 5911
Permanent link to this record
 

 
Author Peeters, M.; Compernolle, T.; Van Passel, S.
Title Simulation of a controlled water heating system with demand response remunerated on imbalance market pricing Type A1 Journal article
Year 2020 Publication Journal of building engineering Abbreviated Journal
Volume 27 Issue 27 Pages 100969
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Economics; Engineering Management (ENM)
Abstract Buildings are responsible for 40% of our worldwide energy consumption and 50% of this energy is converted for Heating Ventilation Air Conditioning (HVAC) systems in buildings. The increasing share of renewable energy production required to make the transition towards a carbon neutral energy system challenges the stability of the grid. Through demand response it becomes possible to activate these systems in support of grid balancing. However, this flexibility is currently not rewarded in the market. We simulate a domestic water heater participating in the balancing of the electricity net and calculated the revenue from this action. We simulate a water heater in connection with an Economic Model Predictive Controller (EMPC) which takes future usage, energy cost, and reward for delivering balanced power into account. We show that the choice of an EMPC controller is valid as it allows the setpoint to change if certain conditions are met, leading to a more optimal revenue stream from selling flexibility. We find that the economic benefits of participating in delivering balancing power is considerable and offset an increase in energy costs. The increase in energy consumption could be justified as the participation in net stabilisation allows the macro-system to integrate more renewable energy sources. More importantly, the simulations also show that the poorer the energy performance of the water heater, the more flexibility can be sold. From a policy point of view, a minimal energy performance should be determined before allowing participation in net stabilisation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502361000075 Publication Date 2019-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes ; Tine Compernolle thanks the Research Foundation Flanders (FWO) for funding her postdoctoral mandate [grant number 12M7417N]. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:164236 Serial 6248
Permanent link to this record
 

 
Author Ramachandran, R.K.; Filez, M.; Solano, E.; Poelman, H.; Minjauw, M.M.; Van Daele, M.; Feng, J.-Y.; La Porta, A.; Altantzis, T.; Fonda, E.; Coati, A.; Garreau, Y.; Bals, S.; Marin, G.B.; Detavernier, C.; Dendooven, J.
Title Chemical and Structural Configuration of Pt Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 31 Pages 9673-9683
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Pt doped semiconducting metal oxides and Pt metal clusters embedded in an oxide matrix are of interest for applications such as catalysis and gas sensing, energy storage and memory devices. Accurate tuning of the dopant level is crucial for adjusting the properties of these materials. Here, a novel atomic layer deposition (ALD) based method for doping Pt into In2O3 in specific, and metals in metal oxides in general, is demonstrated. This approach combines alternating exposures of Pt and In2O3 ALD processes in a single ‘supercycle’, followed by supercycle repetition leading to multilayered nanocomposites. The atomic level control of ALD and its conformal nature make the method suitable for accurate dopant control even on high surface area supports. Oxidation state, local structural environment and crystalline phase of the embedded Pt dopants were obtained by means of X-ray characterization methods and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, this approach allows characterization of the nucleation stages of metal ALD processes, by stacking those states multiple times in an oxide matrix. Regardless of experimental conditions, a few Pt ALD cycles leads to the formation of oxidized Pt species due to their highly dispersed nature, as proven by X-ray absorption spectroscopy (XAS). Grazing-incidence small-angle X-ray scattering (GISAXS) and highresolution scanning transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (HR-STEM/EDXS) show that Pt is evenly distributed in the In2O3 metal oxide matrix without the formation of clusters. For a larger number of Pt ALD

cycles, typ. > 10, the oxidation state gradually evolves towards fully metallic, and metallic Pt clusters are obtained within the In2O3 metal oxide matrix. This work reveals how tuning of the ALD supercycle approach for Pt doping allows controlled engineering of the Pt compositional and structural configuration within a metal oxide matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502418000010 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes This research was supported by the Flemish Research Foundation (FWO-Vlaanderen), the Flemish Government (Long term structural funding – Methusalem funding and Medium scale research infrastructure funding-Hercules funding), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the CALIPSO Trans National Access Program funded by the European Commission in supplying financing of travel costs. We are grateful to the SIXS and SAMBA-SOLEIL staff for smoothly running the beamline facilities. J.D. and R.K.R. are postdoctoral fellows of the FWO. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:164056 Serial 5380
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F.
Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
Year 2020 Publication Carbon Abbreviated Journal Carbon
Volume 157 Issue 157 Pages 371-384
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502548500044 Publication Date 2019-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 49 Open Access
Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
Call Number UA @ admin @ c:irua:165024 Serial 6283
Permanent link to this record
 

 
Author Kang, T.-Y.; Kwon, J.-S.; Kumar, N.; Choi, E.; Kim, K.-M.
Title Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells Type A1 Journal article
Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 9 Issue 22 Pages 4819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502570800096 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited Open Access
Notes The plasma source was kindly provided by the Plasma Bioscience Research Center, Kwangwoon University. Approved Most recent IF: 1.679
Call Number PLASMANT @ plasmant @c:irua:164893 Serial 5435
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Le, L.; Jollans, T.; Pud, S.; Albrecht, W.; Bauer, T.; Caldarola, M.; Kuipers, L.; Orrit, M.
Title Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging Type A1 Journal article
Year 2019 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 19 Issue 12 Pages 8934-8940
Keywords A1 Journal article; Photothermal microscopy, chirality, circular dichroism, dissymmetry factor, linear dichroism, gold nanostructures; Electron Microscopy for Materials Science (EMAT) ;
Abstract Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10–3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502687500074 Publication Date 2019-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited Open Access
Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience (NanoFront) program, and Open Technology Program (OTP, Project No. 16008). M.C. acknowledges the financial support of the Kavli Institute of Nanoscience Delft through the KIND fellowships program. T.B. and L.K. acknowledge the financial support of the European Research Council (ERC) through Project 340438-CONSTANS. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). The authors acknowledge Dr. Benjamin P. Isaacoff for his help in the initial steps of this project. P.S. thanks Martin Baaske for helpful discussions. M.C. thanks Dr. Felipe Bernal Arango for help with the 3D image rendering. Approved Most recent IF: 12.712
Call Number EMAT @ emat @c:irua:165087c:irua:165233 Serial 5439
Permanent link to this record
 

 
Author Yu, H.; Schaekers, M.; Chew, S.A.; Eyeraert, J.-L.; Dabral, A.; Pourtois, G.; Horiguchi, N.; Mocuta, D.; Collaert, N.; De Meyer, K.
Title Titanium (germano-)silicides featuring 10-9 Ω.cm2 contact resistivity and improved compatibility to advanced CMOS technology Type P1 Proceeding
Year 2018 Publication 2018 18th International Workshop On Junction Technology (iwjt) Abbreviated Journal
Volume Issue Pages 80-84 T2 - 18th International Workshop on Junction
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract uIn this work, we discuss three novel Ti (germano-)silicidation techniques featuring respectively the pre-contact amorphization implantation (PCAI), the TiSi co-deposition, and Ti atomic layer deposition (ALD). All three techniques form TiSix(Ge-y) contacts with ultralow contact resistivity (rho(c)) of (1-3)x10(-9) Omega.cm(2) on both highly doped n-Si and p-SiGe substrates: these techniques meet rho(c) requirement of 5-14 nm CMOS technology and feature unified CMOS contact solutions. We further discuss the compatibility of these techniques to the realistic CMOS transistor fabrication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502768600020 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-4511-6; 978-1-5386-4511-6 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:165190 Serial 8673
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
Year 2019 Publication Biophysical chemistry Abbreviated Journal Biophys Chem
Volume 254 Issue Pages 106266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000502890900015 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.402 Times cited Open Access
Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402
Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Florea, A.; Van Loon, J.; van Nuijs, A.L.N.; Samyn, N.; De Wael, K.
Title Unraveling the mechanisms behind the complete suppression of cocaine electrochemical signals by chlorpromazine, promethazine, procaine, and dextromethorphan Type A1 Journal article
Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 91 Issue 24 Pages 15453-15460
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre; Product development
Abstract The present work investigates the challenges accompanied by the electrochemical cocaine detection in physiological conditions (pH 7) in the presence of chlorpromazine, promethazine, procaine, and dextromethorphan, frequently used cutting agents in cocaine street samples. The problem translates into the absence of the cocaine oxidation signal (signal suppression) when in a mixture with one of these compounds, leading to false negative results. Although a solution to this problem was provided through earlier experiments of our group, the mechanisms behind the suppression are now fundamentally investigated via electrochemical and liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) strategies. The latter was used to confirm the passivation of the electrodes due to their interaction with promethazine and chlorpromazine. Electron transfer mechanisms were further identified via linear sweep voltammetry. Next, adsorption experiments were performed on the graphite screen printed electrodes both with and without potential assistance in order to confirm if the suppression of the cocaine signals is due to passivation induced by the cutting agents or their oxidized products. The proposed strategies allowed us to identify the mechanisms of cocaine suppression for each cutting agent mentioned. Suppression due to procaine and dextromethorphan is caused by fouling of the electrode surface by their oxidized forms, while for chlorpromazine and promethazine the suppression of the cocaine signal is related to the strong adsorption of these (nonoxidized) cutting agents onto the graphite electrode surface. These findings provide fundamental insights in possible suppression and other interfering mechanisms using electrochemistry in general not only in the drug detection sector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000503910600018 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access
Notes ; The authors acknowledge financial support from IOF-SBO/POC (UAntwerp) and the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:165727 Serial 5887
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Ghergherehchi, M.; Peeters, F.M.
Title Tuning the bandgap and introducing magnetism into monolayer BC3 by strain/defect engineering and adatom/molecule adsorption Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 126 Issue 14 Pages 144304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching -8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in -8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0-1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000503995300019 Publication Date 2019-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 56 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:165160 Serial 6328
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title Two-dimensional carbon nitride (2DCN) nanosheets : tuning of novel electronic and magnetic properties by hydrogenation, atom substitution and defect engineering Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 126 Issue 21 Pages 215104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing first-principles calculations within the framework of density functional theory, we investigated the structural, electronic, and magnetic properties of graphene and various two-dimensional carbon-nitride (2DNC) nanosheets. The different 2DCN gives rise to diverse electronic properties such as metals (C3N2), semimetals (C4N and C9N4), half-metals (C4N3), ferromagnetic-metals (C9N7), semiconductors (C2N, C3N, C3N4, C6N6, and C6N8), spin-glass semiconductors (C10N9 and C14N12), and insulators (C2N2). Furthermore, the effects of adsorption and substitution of hydrogen atoms as well as N-vacancy defects on the electronic and magnetic properties are systematically studied. The introduction of point defects, including N vacancies, interstitial H impurity into graphene and different 2DCN crystals, results in very different band structures. Defect engineering leads to the discovery of potentially exotic properties that make 2DCN interesting for future investigations and emerging technological applications with precisely tailored properties. These properties can be useful for applications in various fields such as catalysis, energy storage, nanoelectronic devices, spintronics, optoelectronics, and nanosensors. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000504007300023 Publication Date 2019-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 70 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:165733 Serial 6329
Permanent link to this record
 

 
Author Hernandez Parrodi, J.C.; Lucas, H.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; Krook, J.; Svensson, N.; Van Passel, S.
Title Integration of resource recovery into current waste management through (enhanced) landfill mining Type A1 Journal article
Year 2019 Publication Detritus Abbreviated Journal
Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimated 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 1999/31/EC. These older landfills tend to be filled with municipal solid waste and often lack any environmental protection technology. “ Doing nothing”, state-of-theart aftercare or remediating them depends largely on technical, societal and economic conditions which vary between countries. Beside “ doing nothing' and landfill aftercare, there are different scenarios in landfill mining, from re-landfilling the waste into ”sanitary landfills" to seizing the opportunity for a combined resource-recovery and remediation strategy. This review article addresses present and future issues and potential opportunities for landfill mining as an embedded strategy in current waste management systems through a multi-disciplinary approach. In particular, three general landfill mining strategies are addressed with varying extents of resource recovery. These are discussed in relation to the main targets of landfill mining: (i) reduction of the landfill volume (technical), (ii) reduction of risks and impacts (environmental) and (iii) increase in resource recovery and overall profitability (economic). Geophysical methods could be used to determine the characteristics of the landfilled waste and subsurface structures without the need of an invasive exploration, which could greatly reduce exploration costs and time, as well as be useful to develop a procedure to either discard or select the most appropriate sites for (E)LFM. Material and energy recovery from land-filled waste can be achieved through mechanical processing coupled with thermochemical valorization technologies and residues upcycling techniques. Gasification could enable the upcycling of residues after thermal treatment into a new range of eco-friendly construction materials based on inorganic polymers and glass-ceramics. The multi-criteria assessment is directly influenced by waste- and technology related factors, which together with site-specific conditions, market and regulatory aspects, influence the environmental, economic and societal impacts of (E)LFM projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000504065300012 Publication Date 2019-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; This research has been funded by the European Union ' s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721185 “NEW-MINE” (EU Training Network for Resource Recovery through Enhanced Landfill Mining; www.new-mine.eu). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165759 Serial 6219
Permanent link to this record
 

 
Author Wang, Z.; Wang, Y.B.; Yin, J.; Tovari, E.; Yang, Y.; Lin, L.; Holwill, M.; Birkbeck, J.; Perello, D.J.; Xu, S.; Zultak, J.; Gorbachev, R.V.; Kretinin, A.V.; Taniguchi, T.; Watanabe, K.; Morozov, S.V.; Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.; Mishchenko, A.; Geim, A.K.; Novoselov, K.S.; Fal'ko, V.I.; Knothe, A.; Woods, C.R.
Title Composite super-moiré lattices in double-aligned graphene heterostructures = Composite super-moire lattices in double-aligned graphene heterostructures Type A1 Journal article
Year 2019 Publication Science Advances Abbreviated Journal
Volume 5 Issue 12 Pages eaay8897
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000505069600089 Publication Date 2019-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 71 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165754 Serial 6289
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie (International ed. Print) Abbreviated Journal Angew. Chem.
Volume 132 Issue 132 Pages 953-960
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near‐field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single‐crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000505279500063 Publication Date 2020-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8249 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi),Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Strucre Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding from the National Science Foundation (award number: 1602476), Research Corporation for Scietific Advancement (2017 Frontiers in Research Excellence and Discovery Award), and the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO).; sygma Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:166581 Serial 6336
Permanent link to this record