|   | 
Details
   web
Records
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M.
Title Improving footprint calculations of small open economies : combining local with multi-regional input-output tables Type A1 Journal article
Year 2017 Publication Economic systems research Abbreviated Journal
Volume 29 Issue 1 Pages 25-47
Keywords A1 Journal article; Economics; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In a small, open and resource-poor economy, import and export dependency have an ever-growing impact on local policy decisions, which makes local (environmental) policy-makers increasingly depend on global data. This increases the interest in models that link local production and consumption data to global production, trade and environmental data. The recent increase in availability of global environmentally extended multi-regional input-output tables (EE-MRIO tables) provides an opportunity to link them with existing local environmentally extended input-output tables (EE-RIO tables). These combined tables make it possible (1) to analyse the links between local and global production and consumption and (2) to study global value chains, material use and environmental impacts simultaneously. However, estimations using input-output (I-O) analyses contain errors due to imperfect databases. In this article the magnitude of specification, aggregation and time errors are estimated and compared. The results show the need to combine local datasets with multi-regional ones and show that highest detailed (country and sector levels) as well as time series of I-O tables are the way forward for using I-O analyses in local policy-making. The paper provides guidance on trading off investments in model adoption and/or extension and the reliability of estimation results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000395062800002 Publication Date 2016-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-5314 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:142012 Serial 8071
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Willemen, R.; Smet, J.-P.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Lenaerts, S.; Meskens, R.; Jung, H.G.; Potters, G.
Title Assessment of corrosion resistance, material properties, and weldability of alloyed steel for ballast tanks Type A1 Journal article
Year 2017 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume 22 Issue 1 Pages 176-199
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Ballast tanks are of great importance in the lifetime of modern merchant ships. Making a ballast tank less susceptible to corrosion can, therefore, prolong the useful life of a ship and, thereby, lower its operational cost. An option to reinforce a ballast tank is to construct it out of a corrosion-resistant steel type. Such steel was recently produced by POSCO Ltd., South Korea. After 6 months of permanent immersion, the average corrosion rate of A and AH steel (31 samples) was 535 g m(-2) year(-1), while the Korean CRS was corroding with 378 g m(-2) year(-1). This entails a gain of 29 %. Follow-up measurements after 10, 20, and 24 months confirmed this. The results after 6 months exposure to alternating wet/dry conditions are even more explicit. Furthermore, the physical and metallurgical properties of this steel show a density of 7.646 t/m(3), the elasticity modulus 209.3 GPa, the tensile strength 572 MPa, and the hardness 169HV10. Microscopically, the metal consists of equiaxed and recrystallized grains (ferrite and pearlite), with an average size of between 20 and 30 A mu m (ASTM E 112-12 grain size number between 7 and 8) with a few elongated pearlitic grains. The structure is banded ferrite/pearlite. On the basis of a series of energy dispersive X-ray spectrometer measurements the lower corrosion rate of the steel can be attributed to the interplay of Al, Cr, their oxides, and the corroding steel. In addition, the role of each element in the formation of oxide layers and the mechanisms contributing to the corrosion resistance are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000395006400015 Publication Date 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 3 Open Access
Notes ; This paper is published with the explicit permission of POSCO Ltd., original source of the corrosion resistant steel. Due to the creativity of the POSCO engineers and scientists, we could have our challenge, presented in this manuscript. The authors wish to thank the BOF funding received from the University of Antwerp and the Maritime Academy. We also wish to express our gratitude towards to the American Bureau of Shipping for their assistance in procuring the CRS plates, their moral and financial support, as well as to OCAS (Arcelor Mittal, Zelzate, Belgium) for their assistance in a number of measurements. ; Approved Most recent IF: 0.838
Call Number UA @ admin @ c:irua:142509 Serial 5928
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Batuk, D.; Colin, C.V.; Dalla Corte, D.A.; Tarascon, J.-M.
Title Synthesis, structure, and electrochemical properties of k-based sulfates K2M2(SO4)3) with M = Fe and Cu Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 4 Pages 2013-2021
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li+/Na+ insertion materials. Pursuing the same trend, we here report the feasibility of preparing langbeinite “Fe-2(SO4)(3)” via electrochemical and chemical oxidation of K2Fe2(SO4)(3). Additionally, we succeeded in stabilizing a new K2Cu2(SO4)(3) phase via a solid-state synthesis approach. This novel compound crystallizes in a complex orthorhombic structure that differs from that of langbeinite as deduced from synchrotron X-ray and neutron powder diffraction. Electrochemically, the performance of this new phase is limited, which we explain in terms of sluggish diffusion kinetics. We further show that K2Cu2(SO4)(3) decomposes into K2Cu3O(SO4)(3) on heating, and we report for the first time the synthesis of fedotovite K2Cu3O(SO4)(3). Finally, the fundamental attractiveness of these S = 1/2 systems for physicists is examined by neutron magnetic diffraction, which reveals the absence of a long-range ordering of Cu2+ magnetic moments down to 1.5 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos (down) 000394736600027 Publication Date 2017-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 13 Open Access Not_Open_Access
Notes ; We thank Matthieu Courty for performing TGA/DSC measurements. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 and is acknowledged. The French CRG D1B is acknowledged for allocating neutron beamtime. L.L. thanks the ANR “Hipolite” for the Ph.D. funding. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:142531 Serial 4692
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Ottolinger, R.; Haenisch, J.; Holzapfel, B.; Usoskin, A.; Kursumovic, A.; MacManus-Driscoll, J.L.; Stafford, B.H.; Bauer, M.; Nielsch, K.; Schultz, L.; Huehne, R.
Title Tailoring microstructure and superconducting properties in thick BaHfO3 and Ba2YNb/Ta)O-6 doped YBCO films on technical templates Type A1 Journal article
Year 2017 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 27 Issue 4 Pages 6601407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The current transport capability of YBa2Cu3O7-x(YBCO) based coated conductors (CCs) is mainly limited by two features: the grain boundaries of the used textured template, which are transferred into the superconducting film through the buffer layers, and the ability to pin magnetic flux lines by incorporation of defined defects in the crystal lattice. By adjusting the deposition conditions, it is possible to tailor the pinning landscape in doped YBCO in order to meet specific working conditions (T, B) for CC applications. To study these effects, we deposited YBCO layers with a thickness of about 1-2 mu m using pulsed laser deposition on buffered rolling-assisted biaxially textured Ni-W substrates as well as on metal tapes having either an ion-beam-texturedYSZbuffer or an MgO layer textured by inclined substrate deposition. BaHfO3 and the mixed double-perovskite Ba2Y(Nb/Ta)O-6 were incorporated as artificial pinning centers in these YBCO layers. X-ray diffraction confirmed the epitaxial growth of the superconductor on these templates as well as the biaxially oriented incorporation of the secondary phase additions in the YBCO matrix. A critical current density J(c) of more than 2 MA/cm(2) was achieved at 77 K in self-field for 1-2 mu m thick films. Detailed TEM (transmission electron microscopy) studies revealed that the structure of the secondary phase can be tuned, forming c-axis aligned nanocolumns, ab-oriented platelets, or a combination of both. Transport measurements show that the J(c) anisotropy in magnetic fields is reduced by doping and the peak in the J(c) (theta) curves can be correlated to the microstructural features.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos (down) 000394588100001 Publication Date 2016-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 280432. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:141961 Serial 4693
Permanent link to this record
 

 
Author Snoeckx, R.; Ozkan, A.; Reniers, F.; Bogaerts, A.
Title The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 409-424
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H2O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H2, as well as O2 and H2O2, whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000394571900012 Publication Date 2016-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 25 Open Access OpenAccess
Notes The authors acknowledge financial support from the Inter-university Attraction Pole (IAP; grant number IAP-VII/12, P7/34) program “PSI-Physical Chemistry of Plasma-Surface Interactions”, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO; grant number G.0066.12N). This work was performed in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. We also would like to thank the financial support given by “Fonds David et Alice Van Buuren”. Finally, we are very grateful to M. Kushner for providing the Global kin code, to T. Dufour for his support during the experiments, and to R. Aerts for his support during the model development. Approved Most recent IF: 7.226
Call Number PLASMANT @ plasmant @ c:irua:139880 Serial 4412
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M.
Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 235424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000394546100005 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141978 Serial 4557
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos (down) 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 19 Open Access Not_Open_Access
Notes ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record
 

 
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages 1945-1952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000394426400027 Publication Date 2016-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 19 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:140835 Serial 4421
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T.
Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials
Volume 120 Issue 120 Pages 126-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Guildford Editor
Language Wos (down) 000394398900012 Publication Date 2016-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.402 Times cited 20 Open Access OpenAccess
Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402
Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654
Permanent link to this record
 

 
Author van der Rest, A.; Idrissi, H.; Henry, F.; Favache, A.; Schryvers, D.; Proost, J.; Raskin, J.-P.; Van Overmeere, Q.; Pardoen, T.
Title Mechanical behavior of ultrathin sputter deposited porous amorphous Al2O3 films Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 125 Issue 125 Pages 27-37
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of porous amorphous Al2O3 thin films is essential to address reliability issues in wear-resistant, optical and electronic coating applications. Testing the mechanical properties of Al2O3 films thinner than 200 nm is challenging, and the link between the mechanical behavior and the microstructure of such films is largely unknown. Herein, we report on the elastic and viscoplastic mechanical properties of amorphous Al2O3 thin films synthesized by reactive magnetron sputtering using a combination of internal stress, nanoindentation, and on-chip uniaxial tensile testing, together with mechanical homogenization models to separate the effect of porosity from intrinsic variations of the response of the sound material. The porosity is made of voids with 2e30 nm diameter. The Young's modulus and hardness of the films decrease by a factor of two when the deposition pressure increases from 1.2 to 8 mTorr. The contribution of porosity was found to be small, and a change in the atomic structure of the amorphous Al2O3 matrix is hypothesized to be the main contributing factor. The activation volume associated to the viscoplastic deformation mechanism is around 100 Å3. Differences in the atomic structure of the films could not be revealed by electron diffraction, pointing to a minute effect of atomic arrangement on the elastic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000394201500003 Publication Date 2016-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 5 Open Access OpenAccess
Notes This work has been funded by the Belgian Science Policy through the IAP 7/21 project. The support of the ‘Fonds Belge pour la Recherche dans l’Industrie et l’Agriculture (FRIA)’ for A.v.d.R. is also gratefully acknowledged, as well as the support of FNRS through the grant PDR T.0122.13 “Mecano”. Approved Most recent IF: 5.301
Call Number EMAT @ emat @ c:irua:138990 Serial 4330
Permanent link to this record
 

 
Author Wang, W.; Kong, L.; Geng, J.; Wei, F.; Xia, G.
Title Wall ablation of heated compound-materials into non-equilibrium discharge plasmas Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 7 Pages 074005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos (down) 000394097200001 Publication Date 2017-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 19 Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:141965 Serial 4702
Permanent link to this record
 

 
Author Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M.
Title Reversible structural transition in nanoconfined ice Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 064105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393943300005 Publication Date 2017-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141994 Serial 4558
Permanent link to this record
 

 
Author Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F.
Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue 7 Pages 42420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393940700001 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 25 Open Access OpenAccess
Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259
Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A.
Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 605-614
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393931000063 Publication Date 2017-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 26 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446
Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguig, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2016 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 9.446
Call Number EMAT @ emat @ Serial 4323
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos (down) 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446
Call Number UA @ lucian @ c:irua:138601 Serial 4405
Permanent link to this record
 

 
Author Sun, S.R.; Wang, H.X.; Mei, D.H.; Tu, X.; Bogaerts, A.
Title CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling Type A1 Journal article
Year 2017 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
Volume 17 Issue 17 Pages 220-234
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added chemicals is gaining increasing interest in recent years, and a gliding arc plasma has great potential for this purpose, because of its high energy efficiency. In this study, a chemical reaction kinetics model is presented to study the CO2 splitting in a gliding arc discharge. The calculated

conversion and energy efficiency are in good agreement with experimental data in a range of different operating conditions. Therefore, this reaction kinetics model can be used to elucidate the dominant chemical reactions contributing to CO2 destruction and formation. Based on this reaction pathway analysis, the restricting factors for CO2 conversion are figured out, i.e., the reverse reactions and the small treated gas fraction. This allows us to propose some solutions in order to improve the CO2 conversion, such as decreasing the gas temperature, by using a high frequency discharge, or increasing the power

density, by using a micro-scale gliding arc reactor, or by removing the reverse reactions, which could be realized in practice by adding possible scavengers for O atoms, such as CH4. Finally, we compare our results with other types of plasmas in terms of conversion and energy efficiency, and the results illustrate that gliding arc discharges are indeed quite promising for CO2 conversion, certainly when keeping in mind the possible solutions for further performance improvement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393928500023 Publication Date 2016-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited 41 Open Access Not_Open_Access
Notes We acknowledge financial support from the IAP/7 (Inter- university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. This work is also supported by National Natural Science Foundation of China (grant nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @ c:irua:138986 Serial 4332
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B.
Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
Year 2017 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 7 Issue 7 Pages 4453-4459
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393751300030 Publication Date 2017-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:141543 Serial 4528
Permanent link to this record
 

 
Author Belik, A.A.; Morozov, V.A.; Deyneko, D.V.; Savon, A.E.; Baryshnikova, O.V.; Zhukovskaya, E.S.; Dorbakov, N.G.; Katsuya, Y.; Tanaka, M.; Stefanovich, S.Y.; Hadermann, J.; Lazoryak, B.I.
Title Antiferroelectric properties and site occupations ofR3+ cations in Ca8MgR(PO4)7 luminescent host materials Type A1 Journal article
Year 2017 Publication Journal of alloys and compounds Abbreviated Journal
Volume 699 Issue Pages 928-937
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ca8MgR(PO4)(7) = La, Pr, Nd, Sm-Lu, and Y) phosphates with a beta-Ca-3(PO4)(2) related structure were prepared by a standard solid-state method in air. Second-harmonic generation, differential scanning calorimetry, and dielectric measurements led to the conclusion that all Ca8MgR(PO4)(7) are centrosymmetric and go to another centrosymmetric phase in the course of a first-order antiferroelectric phase transition well above room temperature (RT). High-temperature electron diffraction showed that the symmetry changes from R (3) over barc to R (3) over barm during the phase transition. Structures of Ca8MgR(PO4)(7) at RT were refined by the Rietveld method in centrosymmetric space group R (3) over barc. Mg2+ cations occupy the M5 site; the occupancy of the M1 site by R3+ cations increases monotonically from 0.0389 for R = La to 0.1667 for R = Er-Lu, whereas the occupancy of the M3 site by R3+ cations decreases monotonically from 0.1278 for R = La to 0 for R = Er-Lu. In the case of R = Er-Lu, the M3 site is occupied only by Ca2+ cations. P1O(4) tetrahedra and cations at the M3 site are disordered in the R (3) over barc structure of Ca8MgEu(PO4)(7). Using synchrotron X-ray powder diffraction, we found that annealing conditions do not significantly affect the distribution of Ca2+ and Eu3+ cations between the structure positions of Ca8MgEu(PO4)(7). Luminescent properties of CasMgEu(PO4)(7) powder samples were investigated under near-ultraviolet (n-UV) light. Excitation spectra of CasMgEu(PO4)(7) show the strongest absorption at about 395 nm that matches with commercially available n-UV-emitting GaN-based LED chips. Emission spectra show an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393727500129 Publication Date 2016-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152665 Serial 7464
Permanent link to this record
 

 
Author Cotte, M.; Checroun, E.; De Nolf, W.; Taniguchi, Y.; De Viguerie, L.; Burghammer, M.; Walter, P.; Rivard, C.; Salome, M.; Janssens, K.; Susini, J.
Title Lead soaps in paintings : friends or foes? Type A1 Journal article
Year 2017 Publication Studies in conservation Abbreviated Journal Stud Conserv
Volume 62 Issue 1 Pages 2-23
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The origin(s) and role(s) of metal soaps in paints are a worldwide concern today. These hybrid compounds, containing both fatty acid chains and metals associated with a carboxylate function, are increasingly identified in paints. As reviewed in the first part of this work, the presence of metal soaps in paints is differently interpreted in scientific publications: metal soaps are sometimes considered to play a positive role as anchor points, during paint drying processes; they can also be considered as responsible for many degradation processes (protrusions, efflorescences, darkening, etc.). Their origins are also interpreted in various ways. In some paintings (in particular from the twentieth century), they have sometimes introduced on purpose, as additives, to modify the physical properties of the painting materials. In older paintings, metal soaps are usually thought to result from an uncontrolled reaction of oil with lead-based pigments, in particular lead white, red lead, and lead tin yellow. In the second part of this work, the review of historical recipes of lead-based paint shows an important number of recipes based on controlled mixing of oil with lead driers. In the third part, the experimental reproduction of such traditional recipes using walnut oil and litharge (PbO) shows that lead soaps can be formed, both in about one hour at approximate to 100 degrees C, or in about one month at room temperature. It shows as well that after a few years, litharge is no longer detected in the paint medium, while different lead carbonates are. Finally, the micro-infrared spectroscopy and micro-X-ray diffraction re-analysis of protrusions from a nine-year model painting shows together with lead soaps, the presence of Pb-5(CO3)(3)(OH)(2)O ('synthetic plumbonacrite'), an unusual phase recently observed in a protrusion from a painting by Vincent Van Gogh. This work highlights (i) the multiple origins and roles of metal soaps in paints and (ii) the importance of combining the analysis of fragments from historical paintings with the analysis and reproduction of historical recipes. In particular, we show that the components detected today in historical paintings may severely differ from those originally used or prepared by the painter, complicating the assessment of the painter's intentions. More than the presence of metal soaps, the key questions to be tackled should be about their origins and (re)mobilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393691200002 Publication Date 2016-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.578 Times cited 26 Open Access
Notes ; This work was supported by the European Synchrotron Radiation Facility. ; Approved Most recent IF: 0.578
Call Number UA @ admin @ c:irua:141976 Serial 5690
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M.
Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
Year 2017 Publication Journal of applied physics Abbreviated Journal
Volume 121 Issue 4 Pages 044505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393480100030 Publication Date 2017-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152673 Serial 8329
Permanent link to this record
 

 
Author Niu, H.; Pitcher, M.J.; Corkett, A.J.; Ling, S.; Mandal, P.; Zanella, M.; Dawson, K.; Stamenov, P.; Batuk, D.; Abakumov, A.M.; Bull, C.L.; Smith, R.I.; Murray, C.A.; Day, S.J.; Slater, B.; Cora, F.; Claridge, J.B.; Rosseinsky, M.J.
Title Room Temperature Magnetically Ordered Polar Corundum GaFeO3 Displaying Magnetoelectric Coupling Type A1 Journal article
Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 4 Pages 1520-1531
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The polar corundum structure type offers a route to new room temperature multiferroic materials, as the partial LiNbO3-type cation ordering that breaks inversion symmetry may be combined with long-range magnetic ordering of high spin d(5) cations above room temperature in the AFeO(3) system. We report the synthesis of a polar corundum GaFeO3 by a high-pressure, high-temperature route and demonstrate that its polarity arises from partial LiNbO3 -type cation ordering by complementary use of neutron, X-ray, and electron diffraction methods. In situ neutron diffraction shows that the polar corundum forms directly from AlFeO3-type GaFeO3 under the synthesis conditions. The A(3+)/Fe3+ cations are shown to be more ordered in polar corundum GaFeO3 than in isostructural ScFeO3. This is explained by DFT calculations which indicate that the extent of ordering is dependent on the configurational entropy available to each system at the very different synthesis temperatures required to form their corundum structures. Polar corundum GaFeO3 exhibits weak ferromagnetism at room temperature that arises from its Fe2O3-like magnetic ordering, which persists to a temperature of 408 K. We demonstrate that the polarity and magnetization are coupled in this system with a measured linear magnetoelectric coupling coefficient of 0.057 ps/m. Such coupling is a prerequisite for potential applications of polar corundum materials in multiferroic/magnetoelectric devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393355600034 Publication Date 2016-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 12 Open Access OpenAccess
Notes This work was funded by the EPSRC under EP/N004884. We thank the STFC for provision of beam time at ISIS and Diamond Light Source. We thank the Materials Chemistry Consortium (EPSRC, EP/L000202) for access to computer time on the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). A.M.A. is grateful to the Russian Science Foundation (Grant 14-13-00680) for financial support. MJ.R is a Royal Society Research Professor. We wish to thank Dr. Ming Li (University of Nottingham, UK) for helpful discussion and advice. Original data is available at the University of Liverpool's DataCat repository at DOI: 10.17638/datacat.liverpool.ac.uk/235. The supporting crystallographic information file may also be obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition number CSD-432419. Approved Most recent IF: 13.858
Call Number EMAT @ emat @c:irua:147507 Serial 4777
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F.
Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct
Volume 1132 Issue Pages 102-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos (down) 000393254400015 Publication Date 2016-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019
Notes Approved Most recent IF: 1.753
Call Number UA @ lucian @ c:irua:145533 Serial 4726
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D.
Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
Year 2017 Publication Micron Abbreviated Journal Micron
Volume 94 Issue 94 Pages 66-73
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393247300008 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access OpenAccess
Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98
Call Number EMAT @ emat @ c:irua:139515 Serial 4341
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600145
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393184600009 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Vermeylen, S.; De Waele, J.; Vanuytsel, S.; De Backer, J.; Van der Paal, J.; Ramakers, M.; Leyssens, K.; Marcq, E.; Van Audenaerde, J.; L. J. Smits, E.; Dewilde, S.; Bogaerts, A.
Title Cold atmospheric plasma treatment of melanoma and glioblastoma cancer cells Type A1 Journal article
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages 1195-1205
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, two types of melanoma and glioblastoma cancer cell lines are treated with cold atmospheric plasma to assess the effect of several parameters on the cell viability. The cell viability decreases with treatment duration and time until analysis in all cell lines with varying sensitivity. The majority of dead cells stains both AnnexinV (AnnV) and propidium iodide, indicating that the plasma-treated non-viable cells are mostly late apoptotic or necrotic. Genetic mutations might be involved in the response to plasma. Comparing the effects of two gas mixtures, as well as indirect plasma-activated medium versus direct treatment, gives different results per cell line. In conclusion, this study confirms the potential of plasma for cancer therapy and emphasizes the influence of experimental parameters on therapeutic outcome.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393131600007 Publication Date 2016-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 26 Open Access
Notes The authors acknowledge the University of Antwerp for providing research funds. The authors are very grateful to V. Schulz-von der Gathen and J. Benedikt (Bochum University) for providing the COST RF plasma jet. The authors would also like to thank Eva Santermans (University of Hasselt) for statistical advice. J. De Waele, J. Van Audenaerde and J. Van der Paal are research fellows of the Research Foundation Flanders (fellowship numbers: 1121016N, 1S32316N and 11U5416N), E. Marcq of Flanders Innovation & Entrepreneurship (fellowship number: 141433). Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:138722 Serial 4328
Permanent link to this record
 

 
Author Laroussi, M.; Bogaerts, A.; Barekzi, N.
Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 13 Issue 13 Pages 1142-1143
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000393131600001 Publication Date 2016-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Vandekerkhove, A.; Willhammar, T.; Bals, S.; Maes, A.; Martens, J.A.; Kirschhock, C.E.A.; Breynaert, E.
Title Postsynthetic high-alumina zeolite crystal engineering in organic free hyper-alkaline media Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 629-638
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Postsynthetic modification of high -alumina zeolites in hyper alkaline media can be tailored toward alteration of framework topology, crystal size and morphology, or desired Si/A1 ratio. FAU, EMT, MAZ, KFI, HEU, and LTA starting materials were treated with 1.2 M MOH (M = Na, K, RE, or Cs), leading to systematic ordered porosity or fully transformed frameworks with new topology and adjustable Si/Al ratio. In addition to the versatility of this tool for zeolite crystal engineering, these alterations improve understanding of the crystal chemistry. Such knowledge can guide further development in zeolite crystal engineering. Postsynthetic alteration also provides insight on the long-term stability of aluminosilicate zeolites that are used as a sorption sink in concrete -based waste disposal facilities in harsh alkaline conditions.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos (down) 000392891700021 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access OpenAccess
Notes ; This work was supported by long-term structural funding by the Flemish Government (Methusalem grant of Prof. J. Martens) and by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). S.B. acknowledges financial support from European Research Council (ERC Advanced Grant No. 24691-COUNTATOMS, ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:152674UA @ admin @ c:irua:152674 Serial 5145
Permanent link to this record
 

 
Author Roefs, I.; Meulman, B.; Vreeburg, J.H.G.; Spiller, M.
Title Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion Type A1 Journal article
Year 2017 Publication Water research Abbreviated Journal
Volume 109 Issue Pages 274-286
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Sanitation systems are built to be robust, that is, they are dimensioned to cope with population growth and other variability that occurs throughout their lifetime. It was recently shown that building sanitation systems in phases is more cost effective than one robust design. This phasing can take place by building small autonomous decentralised units that operate closer to the actual demand. Research has shown that variability and uncertainty in urban development does affect the cost effectiveness of this approach. Previous studies do not, however, consider the entire sanitation system from collection to treatment. The aim of this study is to assess the economic performance of three sanitation systems with different scales and systems characteristics under a variety of urban development pathways. Three systems are studied: (I) a centralised conventional activated sludge treatment, (II) a community on site source separation grey water and black water treatment and (III) a hybrid with grey water treatment at neighbourhood scale and black water treatment off site. A modelling approach is taken that combines a simulation of greenfield urban growth, a model of the wastewater collection and treatment infrastructure design properties and a model that translates design parameters into discounted asset lifetime costs. Monte Carlo simulations are used to evaluate the economic performance under uncertain development trends. Results show that the conventional system outperforms both of the other systems when total discounted lifetime costs are assessed, because it benefits from economies of scale. However, when population growth is lower than expected, the source-separated system is more cost effective, because of reduced idle capacity. The hybrid system is not competitive under any circumstance due to the costly double piping and treatment. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000392788900028 Publication Date 2016-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:143853 Serial 7587
Permanent link to this record