toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Moretti, M.; Van Dael, M.; Malina, R.; Van Passel, S.
  Title Environmental assessment of waste feedstock mono-dimensional and bio-refinery systems : combining manure co-digestion and municipal waste anaerobic digestion Type A1 Journal article
  Year 2018 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
  Volume 171 Issue 171 Pages 954-961
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract Organic municipal solid waste (OMSW) as a feedstock for energy recovery and material recycling offers the potential to reduce environmental impacts from energy production while displacing emission intensive waste management strategies such as landfills. This paper quantifies the environmental impact of anaerobic digestion of local, residual biomass. A life-cycle assessment was jointly performed for two scenarios for the biological treatment of local organic municipal solid waste and pig manure in the Netherlands. Scenario 1 was a separate treatment using anaerobic digestion, and Scenario 2 was a bio-refinery system that integrates anaerobic digestion of organic, municipal solid waste, and co digestion of pig manure and other organic co-substrates \. For both scenarios, electricity and heat are generated using a combined heat and power engine. The bio-refinery system (Scenario 2) contribution to climate change resulted in 0.16 Mt CO2 eq./yr, which is lower than the 0.17 Mt CO2 eq./yr of Scenario 1. Both scenarios are found to be beneficial with regard to resource depletion and human toxicity. The integration of organic waste and manure anaerobic digestion has no effect on acidification and terrestrial eutrophication impact categories, resulting in 43.59 AE eq. and 86.33 AE eq. for Scenario 1 and 43.58 AE eq. and 86.30 AE eq. for Scenario 2. Moreover, Scenario 2 yields 18% lower emissions than those from natural gas derived electricity in the Netherlands. The biorefinery system represents an opportunity to improve organic waste-management strategies, at the same time as reducing the environmental impact from energy production and the costs for surplus manure disposal by producing high-quality commodities that can be traded on the market. (C) 2017 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000418978100085 Publication Date 2017-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.715 Times cited 12 Open Access
  Notes ; ; Approved Most recent IF: 5.715
  Call Number UA @ admin @ c:irua:148444 Serial 6199
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J.
  Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
  Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz
  Volume 19 Issue 12 Pages 668
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000419007900037 Publication Date 2017-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.821 Times cited 3 Open Access
  Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821
  Call Number UA @ lucian @ c:irua:148548 Serial 4900
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
  Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
  Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
  Volume 7 Issue 7 Pages 442
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000419186800037 Publication Date 2017-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.553 Times cited 19 Open Access OpenAccess
  Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
  Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
  Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 1 Pages 014503
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos (up) 000419229100004 Publication Date 2018-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 23 Open Access
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866
Permanent link to this record
 

 
Author Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V.
  Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
  Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
  Volume 2018 Issue 2018 Pages 62-65
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (up) 000419706000008 Publication Date 2017-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.444 Times cited 6 Open Access OpenAccess
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444
  Call Number UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I.
  Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 4 Pages 045301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos (up) 000419772200005 Publication Date 2018-01-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 11 Open Access
  Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868
Permanent link to this record
 

 
Author Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N.
  Title Nonlinear light mixing by graphene plasmons Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 18 Issue 1 Pages 282-287
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos (up) 000420000000039 Publication Date 2017-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 12 Open Access
  Notes ; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; Approved Most recent IF: 12.712
  Call Number UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 Serial 4887
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Gielis, J.; Caratelli, D.
  Title Modeling of electroporation induced by pulsed electric fields in irregularly shaped cells Type A1 Journal article
  Year 2018 Publication IEEE transactions on biomedical engineering Abbreviated Journal
  Volume 65 Issue 2 Pages 414-423
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract During the past decades, the poration of cell membrane induced by pulsed electric fields has been widely investigated. Since the basic mechanisms of this process have not yet been fully clarified, many research activities are focused on the development of suitable theoretical and numerical models. To this end, a nonlinear, nonlocal, dispersive, and space-time numerical algorithm has been developed and adopted to evaluate the transmembrane voltage and pore density along the perimeter of realistic irregularly shaped cells. The presented model is based on the Maxwell's equations and the asymptotic Smoluchowski's equation describing the pore dynamics. The dielectric dispersion of the media forming the cell has been modeled by using a general multirelaxation Debye-based formulation. The irregular shape of the cell is described by using the Gielis' superformula. Different test cases pertaining to red blood cells, muscular cells, cell in mitosis phase, and cancer-like cell have been investigated. For each type of cell, the influence of the relevant shape, the dielectric properties, and the external electric pulse characteristics on the electroporation process has been analyzed. The numerical results demonstrate that the proposed model is an efficient numerical tool to study the electroporation problem in arbitrary-shaped cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000422914700018 Publication Date 2017-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0018-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:148417 Serial 8264
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D.
  Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
  Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos (up) 000422952300027 Publication Date 2017-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.396 Times cited 5 Open Access OpenAccess
  Notes Approved Most recent IF: 2.396
  Call Number UA @ lucian @ c:irua:147182 Serial 4794
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Sadeghi, H.; Nasseri, A.; Agheli, L.
  Title Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach Type A1 Journal article
  Year 2017 Publication Energies Abbreviated Journal Energies
  Volume 10 Issue 12 Pages 2136-29
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract Air pollutants from fossil fuel fired power plants harm the environment and human health. More than 91% of Irans electricity production is from thermal power plants that use natural gas, diesel, and fuel oil. We apply the impact pathway approach to estimate the health impacts arising from Iranian fossil-based electricity generation emission, and in a next step, we calculate monetary costs of the estimated damages, for a one-year period starting from 20 March 2016 through 2017. We use the new version of SIMPACTS (International Atomic Energy Agency, Vienna, Austria) to investigate the health effects from 61 major Iran fossil-based power plants separately. The selected plants represent 95.6% of total Iran fossil-based power generation. Using the individual and different power plant estimates, we avoid extrapolation and our results can be considered more reliable, taking into account spatial differences. The total damage cost is 723.42 million USD (2000). The damage cost per generated electricity varies from 0.06 to 22.41 USD/MWh and average plant damage cost is 2.85 USD/MWh. Accounting for these external costs indicates the actual costs of fossil energy. The results are useful for policy makers to compare the health costs from these plants and to decide on cleaner energy sources and to take measures to increase benefits for society.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000423156900207 Publication Date 2017-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.262 Times cited 4 Open Access
  Notes ; ; Approved Most recent IF: 2.262
  Call Number UA @ admin @ c:irua:149041 Serial 6200
Permanent link to this record
 

 
Author Vermeulen, M.; Saverwyns, S.; Coudray, A.; Janssens, K.; Sanyova, J.
  Title Identification by Raman spectroscopy of pararealgar as a starting material in the synthesis of amorphous arsenic sulfide pigments Type A1 Journal article
  Year 2018 Publication Dyes and pigments Abbreviated Journal Dyes Pigments
  Volume 149 Issue 149 Pages 290-297
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In this study, a combination of elemental analytical techniques (MA-XRF and SEM-EDX) were used to localize arsenic sulfide pigments within a 17th-century Dutch painting and in the stratigraphy of an 18th-century Flemish polychrome sculpture. Once located, Raman spectroscopy was used to obtain the vibrational signature of the arsenic sulfide pigments employed. By means of the latter analytical technique and due to the very distinctive Raman scattering signal of the various arsenic sulfide compounds, it was possible to identify the arsenic-based pigments as natural orpiment and amorphous arsenic sulfide. In the latter case, based on the minor bands observed and the good condition of the paint layers, it was possible to identify pararealgar, the orangey-yellow to yellow degradation product of realgar, as the initial arsenic sulfide material used for the synthesis of the amorphous pigment. To the best of our knowledge, this is the first time that combined pararealgar/amorphous arsenic sulfide Raman spectra are reported in historical samples. Therefore, this would be the first identification of pararealgar as the starting material to produce amorphous, arsenic sulfide pigments used in artworks.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000423246900033 Publication Date 2017-10-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.473 Times cited 7 Open Access
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development SDD: “Long-term role and fate of metal -sulfides in painted works of art S2ART” (SD/RI/04A). The authors would like to acknowledge the owner of the Abraham Mignon painting, Cecile Glaude for her help with SEM-EDX analyses as well as Livia Depuyt, Carlota Barbosa and Athanasia Fragkou for their assistance. The authors also acknowledge Dr. Karel Palka and Prof. Miroslav Week for their help with the synthesis of the amorphous arsenic sulfide references. ; Approved Most recent IF: 3.473
  Call Number UA @ admin @ c:irua:149307 Serial 5648
Permanent link to this record
 

 
Author Lombardo, J.; Jelić, Ž.L.; Baumans, X.D.A.; Scheerder, J.E.; Nacenta, J.P.; Moshchalkov, V.V.; Van de Vondel, J.; Kramer, R.B.G.; Milošević, M.V.; Silhanek, A.V.
  Title In situ tailoring of superconducting junctions via electro-annealing Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 10 Issue 4 Pages 1987-1996
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We demonstrate the in situ engineering of superconducting nanocircuitry by targeted modulation of material properties through high applied current densities. We show that the sequential repetition of such customized electro-annealing in a niobium (Nb) nanoconstriction can broadly tune the superconducting critical temperature T-c and the normal-state resistance R-n in the targeted area. Once a sizable R-n is reached, clear magneto-resistance oscillations are detected along with a Fraunhofer-like field dependence of the critical current, indicating the formation of a weak link but with further adjustable characteristics. Advanced Ginzburg-Landau simulations fully corroborate this picture, employing the detailed parametrization from the electrical characterization and high resolution electron microscope images of the region within the constriction where the material has undergone amorphization by electro-annealing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (up) 000423355300049 Publication Date 2017-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 23 Open Access
  Notes ; The authors thank the Fonds de la Recherche Scientifique – FNRS, the ARC grant 13/18-08 for Concerted Research Actions, financed by the French Community of Belgium (Wallonia-Brussels Federation), the Research Foundation – Flanders (FWO-Vlaanderen) and the COST action NanoCoHybri (CA16218). The work is also suppported by Methusalem Funding by the Flemish Government. J. Lombardo acknowledges support from F. R. S.-FNRS (FRIA Research Fellowship). The LANEF framework (ANR-10-LABX-51-01) and the Nanoscience Foundation are acknowledged for their support with mutualized infrastructure. The work of A. V. Silhanek is partially supported by PDR T.0106.16 of the F. R. S.-FNRS. The authors thank the ULg Microscopy facility CAREM for part of the SEM investigations. ; Approved Most recent IF: 7.367
  Call Number UA @ lucian @ c:irua:149315UA @ admin @ c:irua:149315 Serial 4937
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S.
  Title Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev
  Volume 82 Issue 2 Pages 1839-1853
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000423371300014 Publication Date 2017-08-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.05 Times cited 28 Open Access
  Notes ; ; Approved Most recent IF: 8.05
  Call Number UA @ admin @ c:irua:149031 Serial 6250
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V.
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 258 Issue 258 Pages 1-10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (up) 000423650400001 Publication Date 2017-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299
  Call Number UA @ lucian @ c:irua:149283 Serial 4936
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J.
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 258 Issue 258 Pages 825-834
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (up) 000423650400107 Publication Date 2017-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299
  Call Number UA @ lucian @ c:irua:149284 Serial 4928
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
  Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 6 Issue 5 Pages 2337-2345
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (up) 000423981200049 Publication Date 2018-01-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 131 Open Access
  Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A.
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv Energy Mater
  Volume 8 Issue 4 Pages 1701581
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.
  Address
  Corporate Author Thesis
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor
  Language Wos (up) 000424152200009 Publication Date 2017-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721
  Call Number UA @ lucian @ c:irua:149269 Serial 4951
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M.
  Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 4 Issue 2 Pages 025015
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication Bristol Editor
  Language Wos (up) 000424399600005 Publication Date 2017-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 16 Open Access
  Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937
  Call Number UA @ lucian @ c:irua:149364 Serial 4984
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
  Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 27 Issue 2 Pages 024001
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000424520100001 Publication Date 2018-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S.
  Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 8 Issue 8 Pages 2733
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos (up) 000424630400046 Publication Date 2018-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 10 Open Access
  Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259
  Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Schroeder, R.R.; Alkarsifi, R.; Gaceur, M.; Koentges, W.; Heidari, H.; Bals, S.; Margeat, O.; Ackermann, J.; Videlot-Ackermann, C.
  Title Interplay of interfacial layers and blend composition to reduce thermal degradation of polymer solar cells at high temperature Type A1 Journal article
  Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 10 Issue 10 Pages 3874-3884
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'-dithiopherie-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b]thiophenediyl]] : [6,6]-phenyl- C-71-butyric acid methyl ester (PTB7:PC70BM) blend as photoactive layer in combination with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as hole extraction layer is used here to focus on the impact of electron extraction layer (EEL) on the thermal stability of solar cells. Solar cells processed with densely packed ZnO nanoparticle layers still show 92% of the initial efficiency after constant annealing during 1 day at 140 degrees C, whereas partially covering ZnO layers as well as an evaporated calcium layer leads to performance losses of up to 30%. This demonstrates that the nature and morphology of EELs highly influence the thermal stability of the device. We extend our study to thermally unstable PTB7:[6,6]-phenyl-C-61-butyric acid methyl ester (PC60BM) blends to highlight the impact of ZnO on the device degradation during annealing. Importantly, only 12% loss in photocurrent density is observed after annealing at 140 degrees C during 1 day when using closely packed ZnO. This is in stark contrast to literature and addressed here to the use of a stable double-sided confinement during thermal annealing. The underlying mechanism of the inhibition of photocurrent losses is revealed by electron microscopy imaging and spatially resolved spectroscopy. We found that the double-sided confinement suppresses extensive fullerene diffusion during the annealing step, but with still an increase in size and distance of the enriched donor and acceptor domains inside the photoactive layer by an average factor of 5. The later result in combination with comparably small photocurrent density losses indicates the existence of an efficient transport of minority charge carriers inside the donor and acceptor enriched phases in PTB7:PC60BM blends.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000424728800082 Publication Date 2018-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.504 Times cited 9 Open Access OpenAccess
  Notes ; We acknowledge the financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract number: 287594). M.P. and R.R.S. acknowledge support by the HeiKA (Heidelberg Karlsruhe Research Partnership) FunTech-3D materials science program. ; Approved Most recent IF: 7.504
  Call Number UA @ lucian @ c:irua:149309UA @ admin @ c:irua:149309 Serial 4939
Permanent link to this record
 

 
Author Kirchner, E.; van der Lans, I.; Ligterink, F.; Geldof, M.; Gaibor, A.N.P.; Hendriks, E.; Janssens, K.; Delaney, J.
  Title Digitally reconstructing Van Gogh's Field with Irises near Arles. Part 2: Pigment concentration maps Type A1 Journal article
  Year 2018 Publication Color research and application Abbreviated Journal Color Res Appl
  Volume 43 Issue 2 Pages 158-176
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Colors in many paintings of great art historical value have changed over time, due to the combined effects of natural ageing, accumulated surface grime, and materials added during later conservation treatments. The physical restoration of the colors in such paintings is not possible. This article describes one part of work done to digitally restore the colors of Van Gogh's painting Field with Irises near Arles, dating from May 1888. We have used multispectral reflectance data to estimate absorption K and backscattering S parameters of Kubelka-Munk 2-constant theory. This was done for all 13 pigments known to have been used by Van Gogh in this painting, and based on this the concentration maps for each of these pigments were calculated. We validated the calculated concentration maps in several ways. For some pigments, we were able to predict spots on the painting where the pigment is expected to occur in unmixed form based on visual examination. For several other pigments, the concentration maps could be shown to agree with XRF data. Finally, for some other pigments the concentration maps were supported by additional evidence from microscopic examinations, remarks in Van Gogh's letters and from early color reproductions. For the 1.7 million pixels for which multispectral data is available, the average color difference between the calculated and measured spectral reflectance curves is CIEDE2000 = 1.05. This further confirms that the Kubelka-Munk calculations are well suited to describe the variety of spectral reflectance on the painting.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000424763100003 Publication Date 2017-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0361-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.798 Times cited 4 Open Access
  Notes ; Netherlands Organisation for Scientific Research, Grant/Award Number: 323.54.004; GOA project SolarPaint of the University of Antwerp Research Council and from the Fund Baillet Latour (Brussels) ; Approved Most recent IF: 0.798
  Call Number UA @ admin @ c:irua:149231 Serial 5576
Permanent link to this record
 

 
Author Fatemi, M.; Azadi, H.; Rafiaani, P.; Taheri, F.; Dubois, T.; Van Passel, S.; Witlox, F.
  Title Effects of supply chain management on tomato export in Iran : application of structural equation modeling Type A1 Journal article
  Year 2018 Publication Journal of food products marketing Abbreviated Journal
  Volume 24 Issue 2 Pages 177-195
  Keywords A1 Journal article; Economics; Engineering Management (ENM); Government and Law
  Abstract Although Iran is one of the top 10 countries in the world that produce tomatoes, the level that they are exported into the global market is low. This issue may have resulted from a major problem within tomatoes supply chain management. This paper aims to develop an empirical model of the supply chain management (SCM) of tomato companies. Throughout the reviewed literature, a SCM construct with different six indicators has been developed, including information sharing, long-term relationship, cooperation, quality, flexibility, and delivery. In this study, the influence of the SCM components on tomato export was identified through the use of empirical data that were collected from 20 different tomato companies in Northeast Iran. Using structural equation modeling, the major elements of SCM were found to have significant impacts on the export of tomatoes. The results also showed that information sharing, cooperation, flexibility, quality, and delivery had significant positive effects on the export of tomatoes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000424803000004 Publication Date 2017-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1045-4446 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:149044 Serial 6192
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
  Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 7 Pages 075414
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos (up) 000424901800006 Publication Date 2018-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 30 Open Access
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Rivera-Julio, J.; Peeters, F.M.; Mendoza-Estrada, V.; Gonzalez-Hernandez, R.
  Title Structural, mechanical and electronic properties of two-dimensional structure of III-arsenide (111) binary compounds: An ab-initio study Type A1 Journal article
  Year 2018 Publication Computational materials science Abbreviated Journal Comp Mater Sci
  Volume 144 Issue 144 Pages 285-293
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Structural, mechanical and electronic properties of two-dimensional single-layer hexagonal structures in the (111) crystal plane of IIIAs-ZnS systems (III = B, Ga and In) are studied by first-principles calculations based on density functional theory (DFT). Elastic and phonon dispersion relation display that 2D h-IIIAs systems (III = B, Ga and In) are both mechanical and dynamically stable. Electronic structures analysis show that the semiconducting nature of the 3D-IIIAs compounds is retained by their 2D single layer counterpart. Furthermore, density of states reveals the influence of sigma and pi bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Calculations of elastic constants show that the Young's modulus, bulk modulus and shear modulus decrease for 2D h-IIIAs binary compounds as we move down on the group of elements of the periodic table. In addition, as the bond length between the neighboring cation-anion atoms increases, the 2D h-IIIAs binary compounds display less stiffness and more plasticity. Our findings can be used to understand the contribution of the r and p bonding in the most stable geometry (planar or buckled) for 2D h-IIIAs systems. Structural and electronic properties of h-IIIAs systems as a function of the number of layers have been also studied. It is shown that h-BAs keeps its planar geometry while both h-GAs and h-InAs retained their buckled ones obtained by their single layers. Bilayer h-IIIAs present the same bandgap nature of their counterpart in 3D. As the number of layers increase from 2 to 4, the bandgap width for layered h-IIIAs decreases until they become semimetal or metal. Interestingly, these results are different to those found for layered h-GaN. The results presented in this study for single and few-layer h-IIIAs structures could give some physical insights for further theoretical and experimental studies of 2D h-IIIV-like systems. (C) 2017 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000424902300036 Publication Date 2017-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.292 Times cited 3 Open Access
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712 – Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.292
  Call Number UA @ lucian @ c:irua:149897UA @ admin @ c:irua:149897 Serial 4949
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C.
  Title The work function of few-layer graphene Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
  Volume 29 Issue 3 Pages 035003
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000425250600002 Publication Date 2016-11-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 61 Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:164938 Serial 8760
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 8 Issue 13 Pages 7287-7300
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000425508900064 Publication Date 2018-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108
  Call Number EMAT @ emat @c:irua:149513 Serial 4905
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
  Title Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 8 Pages 081109
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos (up) 000425603600001 Publication Date 2018-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 21 Open Access
  Notes ; This Rapid Communication was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:149913UA @ admin @ c:irua:149913 Serial 4948
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M.
  Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 27 Issue 2 Pages 023002
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (up) 000425688600001 Publication Date 2018-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 17 Open Access OpenAccess
  Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302
  Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B.
  Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 51 Issue 12 Pages 123002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.
  Address
  Corporate Author Thesis
  Publisher Iop publishing ltd Place of Publication Bristol Editor
  Language Wos (up) 000425774100001 Publication Date 2018-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 65 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588
  Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: