|   | 
Details
   web
Records
Author Ding, L.; Jidkova, S.; Greuter, M.J.W.; Van Herck, K.; Goossens, M.; Martens, P.; de Bock, G.H.; Van Hal, G.
Title Coverage determinants of breast cancer screening in Flanders : an evaluation of the past decade Type A1 Journal article
Year 2020 Publication International journal for equity in health Abbreviated Journal
Volume 19 Issue 1 Pages 212
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Social Epidemiology & Health Policy (SEHPO)
Abstract Background Breast cancer (BC) is the most common cancer in women in the developed world. In order to find developing cancers in an early stage, BC screening is commonly used. In Flanders, screening is performed in and outside an organized breast cancer screening program (BCSP). However, the determinants of BC screening coverage for both screening strategies are yet unknown. Objective To assess the determinants of BC screening coverage in Flanders. Methods Reimbursement data were used to attribute a screening status to each woman in the target population for the years 2008-2016. Yearly coverage data were categorized as screening inside or outside BCSP or no screening. Data were clustered by municipality level. A generalized linear equation model was used to assess the determinants of screening type. Results Over all years and municipalities, the median screening coverage rate inside and outside BCSP was 48.40% (IQR: 41.50-54.40%) and 14.10% (IQR: 9.80-19.80%) respectively. A higher coverage rate outside BSCP was statistically significantly (P < 0.001) associated with more crowded households (OR: 3.797, 95% CI: 3.199-4.508), younger age, higher population densities (OR: 2.528, 95% CI: 2.455-2.606), a lower proportion of unemployed job seekers (OR: 0.641, 95% CI: 0.624-0.658) and lower use of dental care (OR: 0.969, 95% CI: 0.967-0.972). Conclusion Coverage rate of BC screening is not optimal in Flanders. Women with low SES that are characterized by younger age, living in a high population density area, living in crowded households, or having low dental care are less likely to be screened for BC in Flanders. If screened, they are more likely to be screened outside the BCSP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000595753100002 Publication Date 2020-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174374 Serial 6721
Permanent link to this record
 

 
Author Blidar, A.; Trashin, S.; Carrion, E.N.; Gorun, S.M.; Cristea, C.; De Wael, K.
Title Enhanced photoelectrochemical detection of an analyte triggered by its concentration by a singlet oxygen-generating fluoro photosensitizer Type A1 Journal article
Year 2020 Publication Acs Sensors Abbreviated Journal Acs Sensors
Volume 5 Issue 11 Pages 3501-3509
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A.M-1.cm(-2), respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000595550100021 Publication Date 2020-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.9 Times cited Open Access
Notes Approved Most recent IF: 8.9; 2020 IF: NA
Call Number UA @ admin @ c:irua:176057 Serial 7913
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A.
Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 47 Pages 25859-25872
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000595545800023 Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021
Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I.
Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000595533800019 Publication Date 2020-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 14 Open Access OpenAccess
Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number EMAT @ emat @c:irua:172492 Serial 6403
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Van Aert, S.
Title Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations Type A1 Journal article
Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 219 Issue Pages 113131
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000594770500003 Publication Date 2020-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. Approved Most recent IF: 2.2; 2020 IF: 2.843
Call Number EMAT @ emat @c:irua:172449 Serial 6417
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J.
Title HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale Type A1 Journal article
Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 219 Issue Pages 113099
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000594768500006 Publication Date 2020-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 4 Open Access OpenAccess
Notes A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. Approved Most recent IF: 2.2; 2020 IF: 2.843
Call Number EMAT @ emat @c:irua:172485 Serial 6404
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, Aj.; Müller-Caspary, K.; Gauquelin, N.; Verbeeck, J.; Van Aert, S.
Title Atom column detection from simultaneously acquired ABF and ADF STEM images Type A1 Journal article
Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 219 Issue Pages 113046
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000594768500005 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 9 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N, EOS 30489208). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. K. M. C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (Germany) under contract VH-NG-1317. The authors thank Mark Huijben from the University of Twente (Enschede, The Netherlands) for providing the LiMn2O4 sample used in section 4.2 of this study. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. Approved Most recent IF: 2.2; 2020 IF: 2.843
Call Number EMAT @ emat @c:irua:169706 Serial 6373
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys
Volume 695 Issue Pages 108548
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000594173400010 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440
Permanent link to this record
 

 
Author Koch, K.; Ysebaert, T.; Denys, S.; Samson, R.
Title Urban heat stress mitigation potential of green walls: A review Type A1 Journal article
Year 2020 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree
Volume 55 Issue Pages 126843-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Cities with resilience to climate change appear to be a vision of the future, but are inevitable to ensure the quality of life for citizens and to avoid an increase in civilian mortality. Urban green infrastructure (UGI), with the focus on vertical green, poses a beneficial mitigation and adaptation strategy for challenges such as climate change through cooling effects on building and street level. This review article explores recent literature regarding this considerable topic and investigates how green walls can be applied to mitigate this problem. Summary tables (see additional information) and figures are presented that can be used by policy makers and researchers to make informed decisions when installing green walls in built-up environments. At last, knowledge gaps are uncovered that need further investigation to exploit the benefits at its best.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000593921600001 Publication Date 2020-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access
Notes Approved Most recent IF: 6.4; 2020 IF: 2.113
Call Number UA @ admin @ c:irua:172985 Serial 6650
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J.
Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 10 Issue 11 Pages 2152
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000593731700001 Publication Date 2020-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access
Notes Approved Most recent IF: 5.3; 2020 IF: 3.553
Call Number UA @ admin @ c:irua:172621 Serial 6580
Permanent link to this record
 

 
Author Kolev, S.; Paunska, T.; Trenchev, G.; Bogaerts, A.
Title Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge Type P1 Proceeding
Year 2020 Publication Technologies Abbreviated Journal
Volume Issue Pages 012007
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 dissociation and its subsequent conversion into added-value chemicals is a promising strategy for recycling CO2 gas into reusable products. One of the possible methods is direct plasma-induced dissociation. In this work we study the efficiency of CO2 dissociation in pulsed atmospheric-pressure gas discharge between two conducting electrodes by a 0-D numerical plasma model. The purpose of the study is to provide results on the optimal conditions of CO2 conversion with respect to the energy efficiency and dissociation by varying the maximum power density value and the pulse length. The power density is directly related to the discharge current and the reduced electric field in the discharge. We consider pulse lengths in the range from hundreds of nanosecond up to milliseconds. The results obtained show that the dissociation degree and energy efficiency are sensitive to the pulse length (duration) and the power density, so that a considerable improvement of the discharge performance can be achieved by fine-tuning these parameters. The study is intended to provide guidance in designing an experimental set-up and a power supply with the characteristics necessary to achieve optimal conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000593712900007 Publication Date 2020-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume 1492 Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174447 Serial 6769
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T.
Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume Issue Pages 13468-13478
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000592978900031 Publication Date 2020-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited 23 Open Access OpenAccess
Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614
Call Number EMAT @ emat @c:irua:173803 Serial 6432
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K.
Title Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 46 Pages jacs.0c08691-19630
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry
Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000592911000024 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:173136 Serial 6488
Permanent link to this record
 

 
Author Lin, A.; Stapelmann, K.; Bogaerts, A.
Title Advances in Plasma Oncology toward Clinical Translation Type Editorial
Year 2020 Publication Cancers Abbreviated Journal Cancers
Volume 12 Issue 11 Pages 3283
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This Special Issue on “Advances in Plasma Oncology Toward Clinical Translation” aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000592876800001 Publication Date 2020-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173858 Serial 6434
Permanent link to this record
 

 
Author Lin, S.-C.; Kuo, C.-T.; Shao, Y.-C.; Chuang, Y.-D.; Geessinck, J.; Huijben, M.; Rueff, J.-P.; Graff, I.L.; Conti, G.; Peng, Y.; Bostwick, A.; Gullikson, E.; Nemsak, S.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Ghiringhelli, G.; Schneider, C.M.; Fadley, C.S.
Title Two-dimensional electron systems in perovskite oxide heterostructures : role of the polarity-induced substitutional defects Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal
Volume 4 Issue 11 Pages 115002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The discovery of a two-dimensional electron system (2DES) at the interfaces of perovskite oxides such as LaAlO3 and SrTiO3 has motivated enormous efforts in engineering interfacial functionalities with this type of oxide heterostructures. However, the fundamental origins of the 2DES are still not understood, e.g., the microscopic mechanisms of coexisting interface conductivity and magnetism. Here we report a comprehensive spectroscopic investigation on the depth profile of 2DES-relevant Ti 3d interface carriers using depthand element-specific techniques like standing-wave excited photoemission and resonant inelastic scattering. We found that one type of Ti 3d interface carriers, which give rise to the 2DES are located within three unit cells from the n-type interface in the SrTiO3 layer. Unexpectedly, another type of interface carriers, which are polarity-induced Ti-on-Al antisite defects, reside in the first three unit cells of the opposing LaAlO3 layer (similar to 10 angstrom). Our findings provide a microscopic picture of how the localized and mobile Ti 3d interface carriers distribute across the interface and suggest that the 2DES and 2D magnetism at the LaAlO3/SrTiO3 interface have disparate explanations as originating from different types of interface carriers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000592432200004 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 7 Open Access OpenAccess
Notes ; We thank G. M. De Luca and L. Braicovich for discussions. Charles S. Fadley was deceased on August 1, 2019. We are grateful for his significant contributions to this work. We thank Advanced Light Source for the access to Beamline 8.0.3 (qRIXS) via Proposal No. 09892 and beamline 7.0.2 (MAESTRO) via Proposal No. RA-00291 that contributed to the results presented here. We thank synchrotron SOLEIL (via Proposal No. 99180118) for the access to Beamline GALAXIES. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (Advanced Light Source), and by DOE Contract No. DE-SC0014697 through the University of California, Davis (S.-C.L., C.-T.K, and C.S.F.), and from the Julich Research Center, Peter Grunberg Institute, PGI-6. I. L. G. wishes to thank Brazilian scientific agencies CNPQ (Project No. 200789/2017-1) and CAPES (CAPES-PrInt-UFPR) for their financial support. J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union's horizon 2020 research and innovation program ES-TEEM3 under grant agreement no 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. ; esteem3TA; esteem3reported Approved Most recent IF: 3.4; 2020 IF: NA
Call Number UA @ admin @ c:irua:174316 Serial 6713
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K.
Title Gold-sputtered microelectrodes with built-in gold reference and counter electrodes for electrochemical DNA detection Type A1 Journal article
Year 2020 Publication Analyst Abbreviated Journal Analyst
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Gold-sputtered microelectrodes with built-in gold reference and counter electrodes represent a promising platform for the development of disposable DNA sensors. Pretreating gold electrode surfaces and immobilization of DNA thereon is commonly employed in biosensing applications. However, with no scientific or practical guidelines to prepare a DNA sensor using these miniature gold-sputtered microelectrodes, cleaning and immobilization steps need to be systematically optimized and updated. In this work, we present efficient cleaning and modification of miniaturized gold-sputtered microelectrodes with thiolated DNA probes for DNA detection. Additional discussions on subtleties and nuances involved at each stage of pretreating and modifying gold-sputtered microelectrodes are included to present a robust, well-founded protocol. It was evident that the insights on cleaning polycrystalline gold disk electrodes with a benchmark electrode surface for DNA sensors, cannot be transferred to clean these miniature gold-sputtered microelectrodes. Therefore, a comparison between five different cleaning protocols was made to find the optimal one for gold-sputtered microelectrodes. Additionally, two principally different immobilization techniques for gold-sputtered microelectrode modification with thiolated ssDNA were compared i.e., immobilization through passive chemisorption and potential perturbation were compared in terms of thiol-specific attachment and thiol-unspecific adsorption through nitrogenous bases. The hybridization performance of these prepared electrodes was characterized by their sensitive complementary DNA capturing ability, detected by a standard alkaline phosphatase assay. Immobilization through passive chemisorption proved to be efficient in capturing the complementary target DNA with a detection limit of 0.14 nM and sensitivity of 9.38 A M−1 cm2. In general, this work presents a comprehensive understanding of cleaning, modification and performance of gold-sputtered microelectrodes with built-in gold reference and counter electrodes for both fundamental investigations and practical DNA sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000592315100017 Publication Date 2020-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.2 Times cited Open Access
Notes Approved Most recent IF: 4.2; 2020 IF: 3.885
Call Number UA @ admin @ c:irua:172447 Serial 6527
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S.
Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
Volume 117 Issue 45 Pages 27825-27835
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000590753400016 Publication Date 2020-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access
Notes Approved Most recent IF: 11.1; 2020 IF: 9.661
Call Number UA @ admin @ c:irua:174323 Serial 8107
Permanent link to this record
 

 
Author Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S.
Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
Year 2020 Publication Electroanalysis Abbreviated Journal Electroanal
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000590291800001 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited Open Access
Notes Approved Most recent IF: 3; 2020 IF: 2.851
Call Number UA @ admin @ c:irua:174264 Serial 6764
Permanent link to this record
 

 
Author Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; De Wael, K.; Cristea, C.
Title Tackling the problem of sensing commonly abused drugs through nanomaterials and (bio)recognition approaches Type A1 Journal article
Year 2020 Publication Frontiers In Chemistry Abbreviated Journal Front Chem
Volume 8 Issue Pages 561638
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We summarize herein the literature in the last decade, involving the use of nanomaterials and various (bio)recognition elements, such as antibodies, aptamers and molecularly imprinted polymers, for the development of sensitive and selective (bio)sensors for illicit drugs with a focus on electrochemical transduction systems. The use and abuse of illicit drugs remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of “emerging pollutants,” as their consumption has increased tremendously in recent years. Nanomaterials, antibodies, aptamers and molecularly imprinted polymers have gained much attention over the last decade in the development of (bio)sensors for a myriad of applications. The applicability of these (nano)materials, functionalized or not, has significantly increased, and are therefore highly suitable for use in the detection of drugs. Lately, such functionalized nanoscale materials have assisted in the detection of illicit drugs fingerprints, providing large surface area, functional groups and unique properties that facilitate sensitive and selective sensing. The review discusses the types of commonly abused drugs and their toxicological implications, classification of functionalized nanomaterials (graphene, carbon nanotubes), their fabrication, and their application on real samples in different fields of forensic science. Biosensors for drugs of abuse from the last decade's literature are then exemplified. It also offers insights into the prospects and challenges of bringing the functionalized nanobased technology to the end user in the laboratories or in-field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000589960100001 Publication Date 2020-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access
Notes Approved Most recent IF: 5.5; 2020 IF: 3.994
Call Number UA @ admin @ c:irua:174278 Serial 8639
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Mazzeo, P.P.; Canossa, S.; Carraro, C.; Pelagatti, P.; Bacchi, A.
Title Systematic coformer contribution to cocrystal stabilization: energy and packing trends Type A1 Journal article
Year 2020 Publication Crystengcomm Abbreviated Journal Crystengcomm
Volume 22 Issue 43 Pages 7341-7349
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycyclic aromatic compounds such as acridine and phenazine are popular molecular partners used in cocrystal synthesis. The intermolecular interactions occurring between coformers and their molecular partners dominate the cocrystal packing energy, but coformer self-interactions might participate with a constant non-negligible contribution to the overall packing energy stabilization. Two new acridine-based cocrystals have been mechanochemically synthesized, then fully characterized<italic>via</italic>DSC and SCXRD analyses. A statistical analysis in the CSD has been performed to evaluate the recurrent π–π stacking orientation of polycyclic coformers in all deposited acridine-based cocrystals, then extended to phenazine-base analogs. Packing energy calculations were performed on a selected cocrystal subset to quantify the contribution of the π–π interaction to the overall stabilization energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000589506600017 Publication Date 2020-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes European Cooperation in Science and Technology, CA18112 ; Ministero delle Politiche Agricole Alimentari e Forestali, PAC/Packaging Attivo Cristallino ; Approved Most recent IF: 3.1; 2020 IF: 3.474
Call Number EMAT @ emat @c:irua:174262 Serial 6661
Permanent link to this record
 

 
Author Alvarez-Martin, A.; George, J.; Kaplan, E.; Osmond, L.; Bright, L.; Newsome, G.A.; Kaczkowski, R.; Vanmeert, F.; Kavich, G.; Heald, S.
Title Identifying VOCs in exhibition cases and efflorescence on museum objects exhibited at Smithsonian’s National Museum of the American Indian-New York Type A1 Journal article
Year 2020 Publication Heritage science Abbreviated Journal
Volume 8 Issue 1 Pages 115
Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Two mass spectrometry (MS) methods, solid-phase microextraction gas chromatography (SPME–GC–MS) and direct analysis in real time (DART-MS), have been explored to investigate widespread efflorescence observed on exhibited objects at the Smithsonian’s National Museum of the American Indian in New York (NMAI-NY). Both methods show great potential, in terms of speed of analysis and level of information, for identifying the organic component of the efflorescence as 2,2,6,6-tetramethyl-4-piperidinol (TMP-ol) emitted by the structural adhesive (Terostat MS 937) used for exhibit case construction. The utility of DART-MS was proven by detecting the presence of TMP-ol in construction materials in a fraction of the time and effort required for SPME–GC–MS analysis. In parallel, an unobtrusive SPME sampling strategy was used to detect volatile organic compounds (VOCs) accumulated in the exhibition cases. This sampling technique can be performed by collections and conservation staff at the museum and shipped to an off-site laboratory for analysis. This broadens the accessibility of MS techniques to museums without access to instrumentation or in-house analysis capabilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000589423700001 Publication Date 2020-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access
Notes Approved Most recent IF: 2.5; 2020 IF: NA
Call Number UA @ admin @ c:irua:181925 Serial 8056
Permanent link to this record
 

 
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J.
Title Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem
Volume 59 Issue 21 Pages 15898-15912
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000588738100035 Publication Date 2020-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved Most recent IF: 4.6; 2020 IF: 4.857
Call Number EMAT @ emat @c:irua:176058 Serial 6704
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J.
Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 5 Pages 055001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000588209300001 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 1 Open Access OpenAccess
Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:173679 Serial 6545
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Jannis, D.; Cunha, D.M.; Halisdemir, U.; Piamonteze, C.; Lee, J.H.; Belhadi, J.; Eltes, F.; Abel, S.; Jovanovic, Z.; Spreitzer, M.; Fompeyrine, J.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Strain-engineered metal-to-insulator transition and orbital polarization in nickelate superlattices integrated on silicon Type A1 Journal article
Year 2020 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume Issue Pages 2004995
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3dx2-y2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000588146500001 Publication Date 2020-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 18 Open Access OpenAccess
Notes ; This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-9237 and No. P2-0091). This work received support from the ERC CoG MINT (#615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in the Netherlands. This project has received funding as a transnational access project from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. N.G. and J.V. acknowledge GOA project “Solarpaint” of the University of Antwerp. ; esteem3TA; esteem3reported Approved Most recent IF: 29.4; 2020 IF: 19.791
Call Number UA @ admin @ c:irua:173516 Serial 6617
Permanent link to this record
 

 
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A.
Title Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000587595800007 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 9 Open Access
Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:173525 Serial 6584
Permanent link to this record
 

 
Author Devolder, T.; Bultynck, O.; Bouquin, P.; Nguyen, V.D.; Rao, S.; Wan, D.; Sorée, B.; Radu, I.P.; Kar, G.S.; Couet, S.
Title Back hopping in spin transfer torque switching of perpendicularly magnetized tunnel junctions Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 18 Pages 184406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze the phenomenon of back hopping in spin-torque induced switching of the magnetization in perpendicularly magnetized tunnel junctions. The analysis is based on single-shot time-resolved conductance measurements of the pulse-induced back hopping. Studying several material variants reveals that the back hopping is a feature of the nominally fixed system of the tunnel junction. The back hopping is found to proceed by two sequential switching events that lead to a final state P' of conductance close to-but distinct from-that of the conventional parallel state. The P' state does not exist at remanence. It generally relaxes to the conventional antiparallel state if the current is removed. The P' state involves a switching of the sole spin-polarizing part of the fixed layers. The analysis of literature indicates that back hopping occurs only when the spin-polarizing layer is too weakly coupled to the rest of the fixed system, which justifies a posteriori the mitigation strategies of back hopping that were implemented empirically in spin-transfer-torque magnetic random access memories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000587594900005 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes ; This work was supported in part by the IMEC's Industrial Affiliation Program on STT-MRAM device, and in part by the imec IIAP core CMOS and the Beyond CMOS program of Intel Corporation. T. D. and P. B. thank Jonathan Z. Sun for constructive discussions on the BH phenomenon. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:173524 Serial 6458
Permanent link to this record
 

 
Author Admasu, W.F.; Boerema, A.; Nyssen, J.; Minale, A.S.; Tsegaye, E.A.; Van Passel, S.
Title Uncovering ecosystem services of expropriated land : the case of urban expansion in Bahir Dar, Northwest Ethiopia Type A1 Journal article
Year 2020 Publication Land Abbreviated Journal
Volume 9 Issue 10 Pages 395-20
Keywords A1 Journal article; Engineering Management (ENM); Ecosystem Management
Abstract In Ethiopia, urban expansion happens at high rates and results in land expropriations often at the cost of agriculture and forests. The process of urban expansion does not include assessment of ecosystem services (ES). This has been causing unintended environmental problems. This study aims to uncover ES of three most important land use types (cropland, agroforestry, and grassland) that are threatened by land expropriation for urban expansion in Bahir Dar City. The study applied a participatory approach using community perception and expert judgments (N = 108). Respondents were asked to locate their perceptions on the use of 35 different ES, and then to evaluate the potential of the land use. Respondents were shown to have the ability to differentiate between ES and land use in terms of their potential to deliver ES. The results show that agroforestry is expected to have a high relevant potential to deliver 31% of all ES, but cropland 20% and grassland 14%. Food, fodder, timber, firewood, fresh water, energy, compost, climate regulation, erosion prevention, and water purification and treatment were identified as the ten most important services. It is not only the provisioning services that are being supplied by the land use types which are expropriated for urbanization, but also regulating, supporting and cultural services. To ensure sustainable urban land development, we suggest the consideration of the use of ES and the potential of the land use to supply ES when making land use decisions, including land expropriation for urban expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000586875900001 Publication Date 2020-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:173628 Serial 6948
Permanent link to this record
 

 
Author Busatto, S.; Ruiter, M. de; Jastrzebski, J.T.B.H.; Albrecht, W.; Pinchetti, V.; Brovelli, S.; Bals, S.; Moret, M.-E.; de Mello Donega, C.
Title Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume 14 Issue 10 Pages 13146-13160
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid–base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000586793400068 Publication Date 2020-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 21 Open Access OpenAccess
Notes S.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. TOP.715.016.001. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU?s Horizon 2020 program (Grant No. 797153, SOPMEN). This project has received funding from the European Commission Grant (EUSMI E180900184) and European Research Council (ERC Consolidator Grant No. 815128 REALNANO).; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number EMAT @ emat @c:irua:173862 Serial 6438
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S.
Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume 14 Issue Pages acsnano.0c02610
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) 000586793400016 Publication Date 2020-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 25 Open Access OpenAccess
Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number EMAT @ emat @c:irua:172440 Serial 6426
Permanent link to this record