toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 13 Pages 2670-2683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (down) 000321809700015 Publication Date 2013-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access  
  Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:109216 Serial 1292  
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 4 Issue 13 Pages 2209-2216  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos (down) 000321809500018 Publication Date 2013-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 131 Open Access  
  Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687  
  Call Number UA @ lucian @ c:irua:109811 Serial 204  
Permanent link to this record
 

 
Author Liu, Y.; Brelet, Y.; He, Z.; Yu, L.; Forestier, B.; Deng, Y.; Jiang, H.; Houard, A. doi  openurl
  Title Laser-induced periodic annular surface structures on fused silica surface Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 25 Pages 251103-251104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000321145200003 Publication Date 2013-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109832 Serial 1786  
Permanent link to this record
 

 
Author Van Boxem, R.; Verbeeck, J.; Partoens, B. pdf  url
doi  openurl
  Title Spin effects in electron vortex states Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 4 Pages 40010-40016  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The recent experimental realization of electron vortex beams opens up a wide research domain previously unexplored. The present paper explores the relativistic properties of these electron vortex beams, and quantifies deviations from the scalar wave theory. It is common in electron optics to use the Schrodinger equation neglecting spin. The present paper investigates the role of spin and the total angular momentum J(z) and how it pertains to the vortex states. As an application, we also investigate if it is possible to use holographic reconstruction to create novel total angular momentum eigenstates in a transmission electron microscope. It is demonstrated that relativistic spin coupling effects disappear in the paraxial limit, and spin effects in holographically created electron vortex beams can only be exploited by using specialized magnetic apertures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (down) 000321118600011 Publication Date 2013-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 11 Open Access  
  Notes 312483 Esteem2; N246791 Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109852 Serial 3087  
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D. pdf  doi
openurl 
  Title Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films Type A1 Journal article
  Year 2013 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 539 Issue Pages 145-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 5565° leads to a higher potential for twin formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos (down) 000321111100025 Publication Date 2013-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 13 Open Access  
  Notes Fwo Approved Most recent IF: 1.879; 2013 IF: 1.867  
  Call Number UA @ lucian @ c:irua:109268 Serial 807  
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 23 Pages 235210-235217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000321061000003 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109596 Serial 3835  
Permanent link to this record
 

 
Author Comrie, C.M.; Ahmed, A.; Smeets, D.; Demeulemeester, J.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Vantomme, A. pdf  doi
openurl 
  Title Effect of high temperature deposition on CoSi2 phase formation Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 23 Pages 234902-234908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000321011700077 Publication Date 2013-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109266 Serial 815  
Permanent link to this record
 

 
Author Egoavil, R.; Tan, H.; Verbeeck, J.; Bals, S.; Smith, B.; Kuiper, B.; Rijnders, G.; Koster, G.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic scale investigation of a PbTiO3/SrRuO3/DyScO3 heterostructure Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 223106-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An epitaxial PbTiO3 thin film grown on self-organized crystalline SrRuO3 nanowires deposited on a DyScO3 substrate with ordered DyO and ScO2 chemical terminations is investigated by transmission electron microscopy. In this PbTiO3/SrRuO3/DyScO3 heterostructure, the SrRuO3 nanowires are assumed to grow on only one type of substrate termination. Here, we report on the structure, morphology, and chemical composition analysis of this heterostructure. Electron energy loss spectroscopy reveals the exact termination sequence in this complex structure. The energy loss near-edge structure of the Ti-L-2,L-3, Sc-L-2,L-3, and O K edges shows intrinsic interfacial electronic reconstruction. Furthermore, PbTiO3 domain walls are observed to start at the end of the nanowires resulting in atomic steps on the film surface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000320621600070 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Ifox; Esteem2; Countatoms; Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109606UA @ admin @ c:irua:109606 Serial 185  
Permanent link to this record
 

 
Author He, Z.; Tian, H.; Deng, G.; Xu, Q.; Van Tendeloo, G. pdf  doi
openurl 
  Title Microstructure of bilayer manganite PrCa2Mn2O7 showing charge/orbital ordering Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 21 Pages 212902-212905  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructure of the charge/orbital ordering Ruddleden-Popper phase PrCa2Mn2O7 was studied by transmission electron microscopy along both the [001] and the [110] orientation. Three coexisting charge/orbital ordering phases CO1, CO2, and CO3 were observed along the [001] orientation at room temperature. Different from the one-dimensional modulation in the CO1 and CO2 phase, the CO3 phase is characterized by two sets of mutually perpendicular structural modulations. From [110] high angle annular dark field-scanning transmission electron microscopy, we found that the Pr atoms locate in-between the bilayer MnO6 octahedra, which is different from the previous reports.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000320620400056 Publication Date 2013-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Countatoms Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:108762 Serial 2068  
Permanent link to this record
 

 
Author Evers, W.H.; Goris, B.; Bals, S.; Casavola, M.; de Graaf, J.; van Roij, R.; Dijkstra, M.; Vanmaekelbergh, D. pdf  url
doi  openurl
  Title Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment Type A1 Journal article
  Year 2013 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 13 Issue 6 Pages 2317-2323  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment, the process in which nanometer-sized crystals fuse by atomic bonding of specific crystal facets, is expected to be more difficult to control than nanocrystal self-assembly that is driven by entropic factors or weak van der Waals attractions. Here, we present a study of oriented attachment of PbSe nanocrystals that counteract this tuition. The reaction was studied in a thin film of the suspension casted on an immiscible liquid at a given temperature. We report that attachment can be controlled such that it occurs with one type of facets exclusively. By control of the temperature and particle concentration we obtain one- or two-dimensional PbSe single crystals, the latter with a honeycomb or square superimposed periodicity in the nanometer range. We demonstrate the ability to convert these PbSe superstructures into other semiconductor compounds with the preservation of crystallinity and geometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (down) 000320485100001 Publication Date 2012-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 206 Open Access  
  Notes 262348 ESMI; Hercules 3 Approved Most recent IF: 12.712; 2013 IF: 12.940  
  Call Number UA @ lucian @ c:irua:101777 Serial 1847  
Permanent link to this record
 

 
Author Vereecke, B.; van der Veen, M.H.; Sugiura, M.; Kashiwagi, Y.; Ke, X.; Cott, D.J.; Hantschel, T.; Huyghebaert, C.; Tökei, Z. pdf  doi
openurl 
  Title Wafer-level electrical evaluation of vertical carbon nanotube bundles as a function of growth temperature Type A1 Journal article
  Year 2013 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys  
  Volume 52 Issue 42 Pages 04cn02-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have evaluated the resistance of carbon nanotubes (CNTs) grown at a CMOS-compatible temperature using a realistic integration scheme. The structural analysis of the CNTs by transmission electron microscopy (TEM) showed that the degree of graphitization decreased significantly when the growth temperature was decreased from 540 to 400 °C. The CNTs were integrated to form 150-nm-diameter vertical interconnects between a TiN layer and Cu metal trenches on 200 mm full wafers. Wafers with CNTs grown at low temperature were found to have a lower single-contact resistance than those produced at high temperatures. Thickness measurements showed that the low contact resistance is a result of small contact height. This height dependence is masking the impact of CNT graphitization quality on resistance. When benchmarking our results with data from the literature, a relationship between resistivity and growth temperature cannot be found for CNT-based vertical interconnects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Kyoto Editor  
  Language Wos (down) 000320002400150 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922;1347-4065; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.384; 2013 IF: 1.057  
  Call Number UA @ lucian @ c:irua:108713 Serial 3902  
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
  Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 26 Issue 7 Pages 075016-75018  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos (down) 000319973800024 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 11 Open Access  
  Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796  
  Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698  
Permanent link to this record
 

 
Author Tsoufis, T.; Georgakilas, V.; Ke, X.; Van Tendeloo, G.; Rudolf, P.; Gournis, D. pdf  doi
openurl 
  Title Incorporation of pure fullerene into organoclays : towards C60-pillared clay structures Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 24 Pages 7937-7943  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al3+ ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorptiondesorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (down) 000319825500035 Publication Date 2013-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 3 Open Access  
  Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:107347 Serial 1599  
Permanent link to this record
 

 
Author Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. pdf  doi
openurl 
  Title Nanocrystalline ZnO(Ga) : paramagnetic centers, surface acidity and gas sensor properties Type A1 Journal article
  Year 2013 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 182 Issue Pages 555-564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO and ZnO(Ga) samples with different gallium content were prepared by wet-chemical method. Introduction of gallium leads to the increase of amount of weak acid sites such as surface hydroxyl groups. Gas sensing properties toward 0.22 ppm H2S and NO2 were studied at 100450 °C by DC conductance measurements. The optimal temperature for gas sensing experiments was determined. Sensor signal toward H2S decreases with increase of Ga concentration. The dependence of ZnO(Ga) sensor signal to NO2 on the gallium content has non-monotonous character, which correlates with the change of conductivity of the samples in air and concentration of paramagnetic donor states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos (down) 000319488800075 Publication Date 2013-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 42 Open Access  
  Notes Hercules; FWO Approved Most recent IF: 5.401; 2013 IF: 3.840  
  Call Number UA @ lucian @ c:irua:107346 Serial 2250  
Permanent link to this record
 

 
Author Van Hoorebeke, L.; Leroux, O.; Leroux, F.; Mastroberti, A.A.; Santos-Silva, F.; Van Loo, D.; Bagniewska-Zadworna, A.; Bals, S.; Popper, Z.A.; de Araujo Mariath, J.E. doi  openurl
  Title Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae Type A1 Journal article
  Year 2013 Publication Planta Abbreviated Journal Planta  
  Volume 237 Issue 6 Pages 1453-1464  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000319474200004 Publication Date 2013-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-0935;1432-2048; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.361 Times cited 16 Open Access  
  Notes We are grateful to the Laboratorio de Anatomia Vegetal of Universidade Federal do Rio Grande do Sul (UFRGS) and the Centro de Microscopia Eletronica (CME) of UFRGS. Thanks to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for the undergraduate degree grant provided (PIBIC) for the fourth author and research grant and support for the last one. The third author is grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for providing financial support (PRODOC). We acknowledge Christiane de Queiroz Lopes and Moema Queiroz (CME) for the technical assistance. We are indebted to Paul Knox (Centre for Plant Sciences, University of Leeds, UK) for kindly providing the monoclonal antibodies used in this study. The Fund for Scientific Research-Flanders (FWO) is acknowledged for the doctoral grant to D. Van Loo (G.0100.08). Approved Most recent IF: 3.361; 2013 IF: 3.376  
  Call Number UA @ lucian @ c:irua:109641 Serial 1419  
Permanent link to this record
 

 
Author Shapoval, O.; Huehn, S.; Verbeeck, J.; Jungbauer, M.; Belenchuk, A.; Moshnyaga, V. pdf  doi
openurl 
  Title Interface-controlled magnetism and transport of ultrathin manganite films Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 17 Pages 17c711-3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report ferromagnetic, T-C = 240 K, and metallic, T-MI = 250 K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO3(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of d = 3 u.c. The films with d = 8 u.c. demonstrate a bulk-like transport behavior with T-MI similar to T-C = 310 – 330 K. (C) 2013 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000319292800195 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes Ifox; Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109009UA @ admin @ c:irua:109009 Serial 1692  
Permanent link to this record
 

 
Author Lu, J.B.; Shi, H.; Sedlakova-Ignacova, S.; Espinoza, R.; Kopeček, J.; Sittner, P.; Bártová, B.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure and precipitates in annealed Co38Ni33Al29 ferromagnetic shape memory alloy Type A1 Journal article
  Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 572 Issue Pages 5-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy was performed to investigate the microstructure and precipitates in the annealed Co38Ni33Al29 ferromagnetic shape memory alloy. Apart from the dendritic secondary phase in the austenite matrix, micron-sized (up to 100 μm) fcc-based precipitates with partial γ′ L12 ordering and containing none, one or three {1 1 1}p parallel twin planes were found. The orientation relationship between the precipitates and matrix was found to be KurdjumovSachs. STEMEDX analysis indicates that twinned and non-twinned precipitates are Co-rich and Al- and Ni-deficient with respect to the matrix and with a lower Co/Al ratio for the latter. The 3D morphologies of precipitates were reconstructed with focused ion beam/scanning electron microscope dual-beam slice-and-view imaging, showing that the single {1 1 1}p plane twinned precipitates have a plate-like shape while the non-twinned precipitates are lath-like and often bent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000319209600002 Publication Date 2013-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.133; 2013 IF: 2.726  
  Call Number UA @ lucian @ c:irua:107914 Serial 2058  
Permanent link to this record
 

 
Author Kirilenko, D.A. pdf  doi
openurl 
  Title Electron diffraction measurement of the binding rigidity of free-standing graphene Type A1 Journal article
  Year 2013 Publication Technical physics letters Abbreviated Journal Tech Phys Lett+  
  Volume 39 Issue 4 Pages 325-328  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A method for measuring the binding rigidity of free-standing graphene from the dependence of the short-wavelength spectral range of transverse structural fluctuations of a crystal is proposed. The fluctuation spectrum is measured according to the variation in electron-diffraction patterns derived in a transmission electron microscope while tilting the sample.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000319162600003 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850;1090-6533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.771 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.771; 2013 IF: 0.583  
  Call Number UA @ lucian @ c:irua:109031 Serial 920  
Permanent link to this record
 

 
Author Leroux, F.; Bladt, E.; Timmermans, J.-P.; Van Tendeloo, G.; Bals, S. doi  openurl
  Title Annular dark-field transmission electron microscopy for low contrast materials Type A1 Journal article
  Year 2013 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 19 Issue 3 Pages 629-634  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Imaging soft matter by transmission electron microscopy (TEM) is anything but straightforward. Recently, interest has grown in developing alternative imaging modes that generate contrast without additional staining. Here, we present a dark-field TEM technique based on the use of an annular objective aperture. Our experiments demonstrate an increase in both contrast and signal-to-noise ratio in comparison to conventional bright-field TEM. The proposed technique is easy to implement and offers an alternative imaging mode to investigate soft matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos (down) 000319126300014 Publication Date 2013-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 5 Open Access  
  Notes 262348 Esmi; Fwo G002410n G018008 Approved Most recent IF: 1.891; 2013 IF: 2.161  
  Call Number UA @ lucian @ c:irua:108712 Serial 133  
Permanent link to this record
 

 
Author Adjizian, J.J.; De Marco, P.; Suarez-Martinez, I.; El Mel, A.A.; Snyders, R.; Gengler, R.Y.N.; Rudolf, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Ewels, C.P.; pdf  doi
openurl 
  Title Platinum and palladium on carbon nanotubes : experimental and theoretical studies Type A1 Journal article
  Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 571 Issue Pages 44-48  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization act as nucleation sites for metal nanoparticles. Analysis of the C1s core level spectra reveals that there is no covalent bonding between the Pt or Pd atoms and the CNT surface. Unlike other transition metals such as titanium and copper, neither Pd nor Pt show strong oxygen interaction or surface oxygen scavenging behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000319109900007 Publication Date 2013-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 23 Open Access  
  Notes Countatoms; Cost Approved Most recent IF: 1.815; 2013 IF: 1.991  
  Call Number UA @ lucian @ c:irua:108706 Serial 2650  
Permanent link to this record
 

 
Author Filippousi, M.; Papadimitriou, S.A.; Bikiaris, D.N.; Pavlidou, E.; Angelakeris, M.; Zamboulis, D.; Tian, H.; Van Tendeloo, G. pdf  doi
openurl 
  Title Novel coreshell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers : preparation, characterization and release properties Type A1 Journal article
  Year 2013 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut  
  Volume 448 Issue 1 Pages 221-230  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Theranostic polymeric nanocarriers loaded with anticancer drug Taxol and superparamagnetic iron oxide nanocrystals have been developed for possible magnetic resonance imaging (MRI) use and cancer therapy. Multifunctional nanocarriers with a coreshell structure have been prepared by coating superparamagnetic Fe3O4 nanoparticles with block copolymer of poly(ethylene glycol)-b-poly(propylene succinate) with variable molecular weights of the hydrophobic block poly(prolylene succinate). The multifunctional polymer nano-vehicles were prepared using a nanoprecipitation method. Scanning transmission electron microscopy revealed the encapsulation of magnetic nanoparticles inside the polymeric matrix. Energy dispersive X-ray spectroscopy and electron energy loss spectroscopy mapping allowed us to determine the presence of the different material ingredients in a quantitative way. The diameter of the nanoparticles is below 250 nm yielding satisfactory encapsulation efficiency. The nanoparticles exhibit a biphasic drug release pattern in vitro over 15 days depending on the molecular weight of the hydrophobic part of the polymer matrix. These new systems where anti-cancer therapeutics like Taxol and iron oxide nanoparticles (IOs) are co-encapsulated into new facile polymeric nanoparticles, could be addressed as potential multifunctional vehicles for simultaneous drug delivery and targeting imaging as well as real time monitoring of therapeutic effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000319052000026 Publication Date 2013-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-5173; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.649 Times cited 29 Open Access  
  Notes Countatoms Approved Most recent IF: 3.649; 2013 IF: 3.785  
  Call Number UA @ lucian @ c:irua:107348 Serial 2374  
Permanent link to this record
 

 
Author Schattschneider, P.; Löffler, S.; Verbeeck, J. url  doi
openurl 
  Title Comment on “Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter” Type Editorial
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 18 Pages 189501-189502  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (down) 000319019300019 Publication Date 2013-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 8 Open Access  
  Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109014UA @ admin @ c:irua:109014 Serial 410  
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A. pdf  doi
openurl 
  Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 5001-5008  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (down) 000319008700056 Publication Date 2013-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 22 Open Access  
  Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108774 Serial 3460  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Chirea, M.; Altantzis, T.; Pastoriza-Santos, I.; Perez-Juste, J.; Silva, F.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 11 Pages 4776-4784  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m(2) g(-1)) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (down) 000319008700028 Publication Date 2013-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 50 Open Access  
  Notes Esf; 262348 Esmi Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:109060 Serial 705  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title First-principles study of possible shallow donors in ZnAl2O4 spinel Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 17 Pages 174101-174107  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (ZnAl) and Al at the Zn site (AlZn). The antisite defect AlZn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000318653300001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes Iwt; Fwo Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108769 Serial 1219  
Permanent link to this record
 

 
Author Shuhui Sun, Gaixia Zhang, Nicolas Gauquelin, Ning Chen, Jigang Zhou, Songlan Yang, Weifeng Chen, Xiangbo Meng, Dongsheng Geng, Mohammad N. Banis, Ruying Li, Siyu Ye, Shanna Knights, Gianluigi A. Botton, Tsun-Kong Sham & Xueliang Sun url  doi
openurl 
  Title Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition Type A1 Journal Article
  Year 2013 Publication Scientific Reports Abbreviated Journal  
  Volume 3 Issue Pages 1775  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and

automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize

their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt

atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the

capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle.

The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the

state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the

low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the

excellent performance. This work is anticipated to form the basis for the exploration of a next generation of

highly efficient single-atom catalysts for various applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000318334300004 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 345 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4543  
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Ramasse, Q.M.; Erni, R. doi  openurl
  Title Direct evidence of stacking disorder in the mixed ionic-electronic conductor Sr4Fe6O12+\delta Type A1 Journal article
  Year 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 7 Issue 4 Pages 3078-3085  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Determining the structure-to-property relationship of materials becomes particularly challenging when the material under investigation is dominated by defects and structural disorder. Knowledge on the exact atomic arrangement at the defective structure is required to understand its influence on the functional properties. However, standard diffraction techniques deliver structural information that is averaged over many unit cells. In particular, information about defects and order-disorder phenomena is contained in the coherent diffuse scattering intensity which often is difficult to uniquely interpret. Thus, the examination of the local disorder in materials requires a direct method to study their structure on the atomic level with chemical sensitivity. Using aberration-corrected scanning transmission electron microscopy in combination with atomic-resolution electron energy-loss spectroscopy, we show that the controversial structural arrangement of the Fe2O2+delta layers in the mixed ionic-electronic conducting Sr4Fe6O12+delta perovskite can be unambiguously resolved. Our results provide direct experimental evidence for the presence of a nanomixture of “ordered” and “disordered” domains in an epitaxial Sr4Fe6O12+delta thin film. The most favorable arrangement is the disordered structure and is interpreted as a randomly occurring but well-defined local shift of the Fe-O chains in the Fe2O2+delta layers. By analyzing the electron energy-loss near-edge structure of the different building blocks in the Sr4Fe6O12+delta unit cell we find that the mobile holes in this mixed ionic-electronic conducting oxide are highly localized in the Fe2O2+delta layers, which are responsible for the oxide-ion conductivity. A possible link between disorder and oxygen-ion transport along the Fe2O2+delta layers is proposed by arguing that the disorder can effectively break the oxygen diffusion pathways.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000318143300021 Publication Date 2013-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 4 Open Access  
  Notes Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:108476 Serial 713  
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.; pdf  doi
openurl 
  Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3954-3960  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (down) 000317859400051 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348  
Permanent link to this record
 

 
Author Schouteden, K.; Zeng, Y.-J.; Lauwaet, K.; Romero, C.P.; Goris, B.; Bals, S.; Van Tendeloo, G.; Lievens, P.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Band structure quantization in nanometer sized ZnO clusters Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3757-3763  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of individual clusters are determined by scanning tunnelling microscopy and spectroscopy at cryogenic temperatures. The conduction band is found to exhibit clear quantization into discrete energy levels, which can be related to finite-size effects reflecting the zero-dimensional confinement. Our findings illustrate that gas phase cluster production may provide unique possibilities for the controlled fabrication of high purity quantum dots and heterostructures that can be size selected prior to deposition on the desired substrate under controlled ultra-high vacuum conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (down) 000317859400026 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access  
  Notes FWO; Hercules; COUNTATOMS Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108518 Serial 219  
Permanent link to this record
 

 
Author Zhukova, A.A.; Rumyantseva, M.N.; Zaytsev, V.B.; Zaytseva, A.V.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Pd nanoparticles on SnO2(Sb) whiskers : aggregation and reactivity in CO detection Type A1 Journal article
  Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 565 Issue Pages 6-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Single crystal antimony-doped SnO2 whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (down) 000317815300002 Publication Date 2013-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access  
  Notes Approved Most recent IF: 3.133; 2013 IF: 2.726  
  Call Number UA @ lucian @ c:irua:108424 Serial 2566  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: