toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Van Hoorebeke, L.; Leroux, O.; Leroux, F.; Mastroberti, A.A.; Santos-Silva, F.; Van Loo, D.; Bagniewska-Zadworna, A.; Bals, S.; Popper, Z.A.; de Araujo Mariath, J.E. doi  openurl
  Title Heterogeneity of silica and glycan-epitope distribution in epidermal idioblast cell walls in Adiantum raddianum laminae Type A1 Journal article
  Year (down) 2013 Publication Planta Abbreviated Journal Planta  
  Volume 237 Issue 6 Pages 1453-1464  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319474200004 Publication Date 2013-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-0935;1432-2048; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.361 Times cited 16 Open Access  
  Notes We are grateful to the Laboratorio de Anatomia Vegetal of Universidade Federal do Rio Grande do Sul (UFRGS) and the Centro de Microscopia Eletronica (CME) of UFRGS. Thanks to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for the undergraduate degree grant provided (PIBIC) for the fourth author and research grant and support for the last one. The third author is grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for providing financial support (PRODOC). We acknowledge Christiane de Queiroz Lopes and Moema Queiroz (CME) for the technical assistance. We are indebted to Paul Knox (Centre for Plant Sciences, University of Leeds, UK) for kindly providing the monoclonal antibodies used in this study. The Fund for Scientific Research-Flanders (FWO) is acknowledged for the doctoral grant to D. Van Loo (G.0100.08). Approved Most recent IF: 3.361; 2013 IF: 3.376  
  Call Number UA @ lucian @ c:irua:109641 Serial 1419  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: