|   | 
Details
   web
Records
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (down) 14 Issue 22 Pages 8170-8178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304102200033 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:98377 Serial 2702
Permanent link to this record
 

 
Author Ahonen, P.P.; Kauppinen, E.I.; Joubert, J.C.; Deschanvres, J.L.; Van Tendeloo, G.
Title Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxide Type A1 Journal article
Year 1999 Publication Journal of materials research Abbreviated Journal J Mater Res
Volume (down) 14 Issue 10 Pages 3938-3948
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline titanium dioxide was prepared via aerosol pyrolysis of titanium alkoxide precursor at 200-580 degrees C in air and in nitrogen atmospheres. Powders were characterized by x-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray fluorescence, Raman and infrared spectroscopy, and Berner-type low-pressure impactor. The anatase phase transition was initiated at 500 degrees C in nitrogen and at 580 degrees C in air. Under other conditions amorphous powders were observed and transformed to nanocrystalline TiO2 via thermal postannealing. In air, smooth and spherical particles with 2-4-mu m diameter were formed with an as-expected tendency to convert to rutile in the thermal postannealings. In nitrogen, a fraction of the titanium tetrabutoxide precursor evaporated and formed ultrafine particles via the gas-to-particle conversion. At 500 degrees C thermally stable anatase phase was formed in nitrogen. A specific surface area as high as 280 m(2) g(-1) was observed for an as-prepared powder.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000083163700019 Publication Date 2008-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.673 Times cited 38 Open Access
Notes Approved Most recent IF: 1.673; 1999 IF: 1.574
Call Number UA @ lucian @ c:irua:103485 Serial 2705
Permanent link to this record
 

 
Author Malladi, S.K.; Xu, Q.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yucelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W.
Title Real-time atomic scale imaging of nanostructural evolution in aluminum alloys Type A1 Journal article
Year 2014 Publication Nano Letters Abbreviated Journal Nano Lett
Volume (down) 14 Issue 1 Pages 384-389
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 degrees C, showing in unparalleled detail where and how precipitates nucleate, grow,or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000329586700061 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:114789 Serial 2833
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D.; den Dekker, A.J.
Title Resolution of coherent and incoherent imaging systems reconsidered: classical criteria and a statistical alternative Type A1 Journal article
Year 2006 Publication Optics express Abbreviated Journal Opt Express
Volume (down) 14 Issue 9 Pages 3830-3839
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000237296200013 Publication Date 2006-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 45 Open Access
Notes Fwo Approved Most recent IF: 3.307; 2006 IF: 4.009
Call Number UA @ lucian @ c:irua:58262 Serial 2883
Permanent link to this record
 

 
Author Fleurov, V.; Ivanov, V.A.; Peeters, F.M.; Vagner, I.D.
Title Spin-engineered quantum dots Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume (down) 14 Issue 4 Pages 361-365
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to create and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nuclear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > 100 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000177511900003 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 12 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:104150 Serial 3088
Permanent link to this record
 

 
Author Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A.
Title Sputter deposition of MgxAlyOz thin films in a dual-magnetron device : a multi-species Monte Carlo model Type A1 Journal article
Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
Volume (down) 14 Issue 7 Pages 073043
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Targetsubstrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000307072500003 Publication Date 2012-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 2 Open Access
Notes Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:100100 Serial 3111
Permanent link to this record
 

 
Author Buschmann, V.; Van Tendeloo, G.
Title Structural characterization of colloidal Ag2Se nanocrystals Type A1 Journal article
Year 1998 Publication Langmuir Abbreviated Journal Langmuir
Volume (down) 14 Issue Pages 1528-1531
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000072914700007 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 15 Open Access
Notes Approved Most recent IF: 3.833; 1998 IF: 2.813
Call Number UA @ lucian @ c:irua:25659 Serial 3218
Permanent link to this record
 

 
Author Baguer, N.; Neyts, E.; van Gils, S.; Bogaerts, A.
Title Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations Type A1 Journal article
Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos
Volume (down) 14 Issue 11/12 Pages 339-346
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper presents the computational study of the metal-organic (MO) CVD of titanium dioxide (TiO2) films grown using titanium tetraisopropoxide (TTIP) as a precursor and nitrogen as a carrier gas. The TiO2 films are deposited under atmospheric pressure. The effects of the precursor concentration, the substrate temperature, and the hydrolysis reaction on the deposition process are investigated. It is found that hydrolysis of the TTIP decreases the onset temperature of the gas-phase thermal decomposition, and that the deposition rate increases with the precursor concentration and with the decrease of substrate temperature. Concerning the mechanism responsible for the film growth, the model shows that at the lowest precursor concentration, the direct adsorption of the precursor is dominant, while at higher precursor concentrations, the monomer deposition becomes more important.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000262215800003 Publication Date 2008-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.333 Times cited 14 Open Access
Notes Approved Most recent IF: 1.333; 2008 IF: 1.483
Call Number UA @ lucian @ c:irua:71905 Serial 3325
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Van Tendeloo, G.; Lucas, A.; Lambin, P.
Title Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume (down) 14 Issue 4 Pages 603-606
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000220224100021 Publication Date 2004-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54758 Serial 3339
Permanent link to this record
 

 
Author Verlinden, G.; Gijbels, R.; Geuens, I.; de Keyzer, R.
Title Surface analysis of halide distributions in complex AgX microcrystals by imaging time-of-flight SIMS (TOF-SIMS) Type A1 Journal article
Year 1999 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume (down) 14 Issue Pages 429-434
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000079138500015 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 10 Open Access
Notes Approved Most recent IF: 3.379; 1999 IF: 3.677
Call Number UA @ lucian @ c:irua:24928 Serial 3390
Permanent link to this record
 

 
Author Veith, G.M.; Lobanov, M.V.; Emge, T.J.; Greenblatt, M.; Croft, M.; Stowasser, F.; Hadermann, J.; Van Tendeloo, G.
Title Synthesis and charactreization of the new Ln(2)FeMoO(7) (Ln = Y, Dy, Ho) compounds Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume (down) 14 Issue Pages 1623-1630
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000221507200021 Publication Date 2004-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 17 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:47319 Serial 3421
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.; Nikolaev, A.V.
Title The C60 molecules in (C60)N@SWCNT peapods: crystal field, intermolecular interactions and dynamics Type A1 Journal article
Year 2006 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
Volume (down) 14 Issue 2/3 Pages 171-178
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000238762900006 Publication Date 2006-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.35 Times cited 10 Open Access
Notes Approved Most recent IF: 1.35; 2006 IF: 0.462
Call Number UA @ lucian @ c:irua:60025 Serial 3518
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (down) 14 Issue 4 Pages 1463-1467
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000298754500018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 67 Open Access
Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Mukhopadhyay, S.; Peeters, F.M.
Title The pinning effect in a parabolic quantum dot Type A1 Journal article
Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume (down) 14 Issue 34 Pages 8005-8010
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using improved Wigner-Brillouin perturbation theory we study resonant electron-phonon interaction in a semiconductor quantum dot. We predict pinning of the excited energy levels to the ground state level plus one optical phonon as a function of the strength of the confinement potential. This effect should be observable through optical spectroscopic measurements.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000178051800022 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes Approved Most recent IF: 2.649; 2002 IF: 1.775
Call Number UA @ lucian @ c:irua:102824 Serial 3591
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.;
Title Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
Volume (down) 14 Issue 8 Pages 4389-4394
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000340446200028 Publication Date 2014-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access
Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:118128 Serial 3678
Permanent link to this record
 

 
Author Cornil, D.; Li, H.; Wood, C.; Pourtois, G.; Bredas, J.-L.; Cornil, J.
Title Work-function modification of Au and Ag surfaces upon deposition of self-assembled monolayers : influence of the choice of the theoretical approach and the thiol decomposition scheme Type A1 Journal article
Year 2013 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume (down) 14 Issue 13 Pages 2939-2946
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have characterized theoretically the work-function modifications of the (111) surfaces of gold and silver upon deposition of self-assembled monolayers based on methanethiol and trifluoromethanethiol. A comparative analysis is made between the experimental results and those obtained from two widely used approaches based on density functional theory. The contributions to the total work-function modifications are estimated on the basis of two decomposition schemes of the thiol molecules that have been proposed in the literature. The contributions are found to differ significantly between the two approaches, as do the corresponding adsorption energies.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000324316000014 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 9 Open Access
Notes Approved Most recent IF: 3.075; 2013 IF: 3.360
Call Number UA @ lucian @ c:irua:112278 Serial 3923
Permanent link to this record
 

 
Author Belov, I.; Vanneste, J.; Aghaee, M.; Paulussen, S.; Bogaerts, A.
Title Synthesis of Micro- and Nanomaterials in CO2and CO Dielectric Barrier Discharges: Synthesis of Micro- and Nanomaterials… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600065
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric Barrier Discharges operating in CO and CO2 form solid products at atmospheric pressure. The main differences between both plasmas and their deposits were analyzed, at similar energy input. GC measurements revealed a mixture of CO2, CO, and O2 in the CO2 DBD exhaust, while no O2 was found in the CO plasma. A coating of nanoparticles composed of Fe, O, and C was produced by the CO2 discharge, whereas, a microscopic dendrite-like carbon structure was formed in the CO plasma. Fe3O4 and Fe crystalline phases were found in the CO2 sample. The CO

deposition was characterized as an amorphous structure, close to polymeric CO (p-CO). Interestingly, p-CO is not formed in the CO2 plasma, in spite of the significant amounts of CO produced (up to 30% in the reactor exhaust).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397476000007 Publication Date 2016-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 10 Open Access Not_Open_Access
Notes European Union Seventh Framework Programme FP7-PEOPLE-2013-ITN, 606889 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141759 Serial 4487
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600145
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393184600009 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A.
Title Influence of Gap Size and Dielectric Constant of the Packing Material on the Plasma Behaviour in a Packed Bed DBD Reactor: A Fluid Modelling Study: Influence of Gap Size and Dielectric Constant… Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600129
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge (DBD) was studied by means of fluid modelling, to investigate the influence of the dielectric constant of the packing on the plasma characteristics, for two different gap sizes. The electric field strength and electron temperature are much more enhanced in a microgap reactor than

in a mm-gap reactor, leading to more current peaks per half-cycle, but also to non-quasineutral plasma. Increasing the dielectric constant enhances the electric field further, but only up to a certain value of dielectric constant, being 9 for a microgap and 100 for a mm-gap reactor. The enhanced electric field results in a higher electron temperature, but also lower electron density. This last one strongly affects the reaction rate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000010 Publication Date 2016-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 23 Open Access Not_Open_Access
Notes Acknowledgements: This research was carried out in the framework of the network on Physical Chemistry of Plasma- Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K. Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142639 Serial 4560
Permanent link to this record
 

 
Author Koelman, P.; Heijkers, S.; Tadayon Mousavi, S.; Graef, W.; Mihailova, D.; Kozak, T.; Bogaerts, A.; van Dijk, J.
Title A Comprehensive Chemical Model for the Splitting of CO2in Non-Equilibrium Plasmas: A Comprehensive Chemical Model for CO2Splitting Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600155
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An extensive CO2 plasmamodel is presented that is relevant for the production of ‘‘solar fuels.’’ It is based on reaction rate coefficients fromrigorously reviewed literature, and is augmented with reactionrate coefficients that are obtained fromscaling laws.The input data set,which is suitable for usage with the plasma simulation software Plasimo (https://plasimo.phys.tue.nl/), is available via the Plasimo and publisher’s websites.1 The correctness of this model implementation has been established by independent ZDPlasKin implementation (http://www.zdplaskin.

laplace.univ-tlse.fr/), to verify that the results agree. Results of these ‘‘global models’’ are presented for a DBD plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000009 Publication Date 2016-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 21 Open Access Not_Open_Access
Notes Dutch Technology Foundation STW; Ministerie van Economische Zaken; Hercules Foundation; Acknowledgements: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Furthermore, we acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program PSI-Physical Chemistry of Plasma- Surface Interactions by the Belgian Federal Office for Science Policy (BELSPO). Part of the calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142643 Serial 4565
Permanent link to this record
 

 
Author Georgieva, V.; Berthelot, A.; Silva, T.; Kolev, S.; Graef, W.; Britun, N.; Chen, G.; van der Mullen, J.; Godfroid, T.; Mihailova, D.; van Dijk, J.; Snyders, R.; Bogaerts, A.; Delplancke-Ogletree, M.-P.
Title Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments: Understanding Microwave Surface-Wave Sustained Plasmas … Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600185
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An Ar plasma sustained by a surfaguide wave launcher is investigated at intermediate pressure (200–2667 Pa). Two 2D self-consistent models (quasi-neutral and plasma bulk-sheath) are developed and benchmarked. The complete set of electromagnetic and fluid equations and the boundary conditions are presented. The transformation of fluid equations from a local reference frame, that is, moving with plasma or when the gas flow is zero, to a laboratory reference frame, that is,

accounting for the gas flow, is discussed. The pressure range is extended down to 80 Pa by experimental measurements. The electron temperature decreases with pressure. The electron density depends linearly on power, and changes its behavior with pressure depending on the product of pressure and radial plasma size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000012 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access Not_Open_Access
Notes Federaal Wetenschapsbeleid; European Marie Curie RAPID project; European Union's Seventh Framework Programme, 606889 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142807 Serial 4568
Permanent link to this record
 

 
Author Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A.
Title Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000011 Publication Date 2016-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Snoeckx, R.; Koz?k, T.
Title Plasma based CO2and CH4conversion: A modeling perspective Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600070
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper gives an overview of our plasma chemistry modeling for CO2 and CH4 conversion in a dielectric barrier discharge (DBD) and microwave (MW) plasma. We focus on pure CO2 splitting and pure CH4 reforming, as well as mixtures of CO2/CH4, CH4/O2, and CO2/H2O. We show calculation results for the conversion, energy efficiency, and product formation, in comparison with experiments where possible. We also present the underlying chemical reaction pathways, to explain the observed

trends. For pure CO2, a comparison is made between a DBD and MW plasma, illustrating that the higher energy efficiency of the latter is attributed to the more important role of the vibrational levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900001 Publication Date 2016-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 17 Open Access Not_Open_Access
Notes Inter-university Attraction Pole (IAP/7); Federaal Wetenschapsbeleid; Francqui Research Foundation; Fonds De La Recherche Scientifique – FNRS, G.0383.16N ; Hercules Foundation; Flemish Government; UAntwerpen; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144209 Serial 4579
Permanent link to this record
 

 
Author Snoeckx, R.; Rabinovich, A.; Dobrynin, D.; Bogaerts, A.; Fridman, A.
Title Plasma-based liquefaction of methane: The road from hydrogen production to direct methane liquefaction Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 14 Pages 1600115
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract For the energy industry, a process that is able to transform methane—being the prime component of natural gas—efficiently into a liquid product would be equivalent to a goose with golden eggs. As such it is no surprise that research efforts in this field already date back to the nineteen hundreds. Plasma technology can be considered to be a novel player in this field, but nevertheless one with great potential. Over the past decades this technology has evolved from sole hydrogen production, over indirect methane liquefaction to eventually direct plasma-assisted methane liquefaction processes. An overview of this evolution and these processes is presented, from which it becomes clear that the near future probably lies with the direct two phase plasma-assisted methane liquefaction and the far future with the direct oxidative methane liquefaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900008 Publication Date 2016-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 16 Open Access Not_Open_Access
Notes Advanced Plasma Solutions; Drexel University; Federaal Wetenschapsbeleid; Fonds De La Recherche Scientifique – FNRS, G038316N V403616N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144212 Serial 4622
Permanent link to this record
 

 
Author Neyts, E.C.; Bal, K.M.
Title Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 6 Pages e1600158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The catalytic oxidative dehydrogenation of hydrocarbons is an industrially important process, in which selectivity is a key issue. We here investigate the conversion of methanol to formaldehyde on a vanadia surface employing long timescale simulations, reaching a time scale of seconds. In particular, we compare the thermal process to the case where an additional external electric field is applied, as would be the case in a direct plasma-catalysis setup. We find that the electric field influences the retention time of the molecules at the catalyst surface. These simulations provide an atomic scale insight in the thermal catalytic oxidative dehydrogenation process, and in how an external electric field may affect this process.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000403699900013 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number UA @ lucian @ c:irua:144210 Serial 4647
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Georgieva, V.; Dussart, R.; Neyts, E.; Bogaerts, A.
Title Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF6/O2plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 9 Pages 1700018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cryogenic plasma etching is a promising technique for high-control wafer development with limited plasma induced damage. Cryogenic wafer temperatures effectively reduce surface damage during etching, but the fundamental mechanism is not well understood. In this study, the influences of wafer temperature, gas mixture and substrate bias on the (cryogenic) etch rates of Si with SF6/O2 inductively coupled plasmas are experimentally and computationally investigated. The etch rates are measured in situ with double-point reflectometry and a hybrid computational Monte Carlo – fluid model is applied to calculate plasma properties. This work allows the reader to obtain a better insight in the effects of wafer temperature on the etch rate and to find operating conditions for successful anisotropic (cryo)etching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410773200012 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 0880.212.840 ; Hercules Foundation; Flemish Government (Department EWI); Universiteit Antwerpen; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:145637 Serial 4708
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Pressure as an additional control handle for non-thermal atmospheric plasma processes Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 11 Pages 1700046
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract above atmospheric) pressure regimes (1–3.5 bar). It was demonstrated that these operational conditions significantly influence both the discharge dynamics and the process efficiencies of O2 and CO2 discharges. For the case of the O2 DBD, the pressure rise results in the amplification of the discharge current, the appearance of emission lines of the metal electrode material (Fe, Cr, Ni) in the optical emission spectrum and the formation of a granular film of the erosion products (10–300 nm iron oxide nanoparticles) on the reactor walls. Somewhat similar behavior was observed also for the CO2 DBD. The discharge current, the relative intensity of the CO Angstrom band measured by Optical Emission Spectroscopy (OES) and the CO2 conversion rates could be stimulated to some extent by the rise in pressure. The optimal conditions for the O2 DBD (P = 2 bar) and the CO2 DBD (P = 1.5 bar) are demonstrated. It can be argued that the dynamics of the microdischarges (MD) define the underlying process of this behavior. It could be

demonstrated that the pressure increase stimulates the formation of more intensive but fewer MDs. In this way, the operating pressure can represent an additional tool to manipulate the properties of the MDs in a DBD, and as a result also the discharge performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000415339700011 Publication Date 2017-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 1 Open Access Not_Open_Access
Notes Seventh Framework Programme, Grant Agreement № 606889 (RAPID – Reactive Atmospheric Plasma processIng – Education Network) ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:147024 Serial 4763
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A.
Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (down) 14 Issue 10 Pages 1700013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413045800010 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.
Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume (down) 14 Issue 10 Pages 962-+
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488977100016 Publication Date 2019-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 44 Open Access
Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986
Call Number UA @ admin @ c:irua:163589 Serial 5407
Permanent link to this record
 

 
Author Kuczumov, A.; Vekemans, B.; Schalm, O.; Dorriné, W.; Chevallier, P.; Dillmann, P.; Ro, C.-U.; Janssens, K.; Van Grieken, R.
Title Analyses of petrified wood by electron, X-ray and optical microprobes Type A1 Journal article
Year 1999 Publication Journal of analytical atomic spectroscopy Abbreviated Journal
Volume (down) 14 Issue Pages 435-446
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000079138500016 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:22889 Serial 5466
Permanent link to this record