|
Abstract |
This paper gives an overview of our plasma chemistry modeling for CO2 and CH4 conversion in a dielectric barrier discharge (DBD) and microwave (MW) plasma. We focus on pure CO2 splitting and pure CH4 reforming, as well as mixtures of CO2/CH4, CH4/O2, and CO2/H2O. We show calculation results for the conversion, energy efficiency, and product formation, in comparison with experiments where possible. We also present the underlying chemical reaction pathways, to explain the observed
trends. For pure CO2, a comparison is made between a DBD and MW plasma, illustrating that the higher energy efficiency of the latter is attributed to the more important role of the vibrational levels. |
|