toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M.
  Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 30 Issue 11 Pages 3882-3893
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.
  Address
  Corporate Author Thesis
  Publisher American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000435416600038 Publication Date 2018-05-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
  Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:151980 Serial 5016
Permanent link to this record
 

 
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M.
  Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 30 Issue 8 Pages 2819-2828
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.
  Address
  Corporate Author Thesis
  Publisher American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000431088400038 Publication Date 2018-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 28 Open Access Not_Open_Access
  Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:151576 Serial 5042
Permanent link to this record
 

 
Author Tong, Y.; Yao, E.-P.; Manzi, A.; Bladt, E.; Wang, K.; Doeblinger, M.; Bals, S.; Mueller-Buschbaum, P.; Urban, A.S.; Polavarapu, L.; Feldmann, J.
  Title Spontaneous self-assembly of Perovskite nanocrystals into electronically coupled supercrystals : toward filling the green gap Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 30 Issue 30 Pages 1801117
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at approximate to 530-535 nm, while the individual nanocubes emit a cyan-green color (approximate to 512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000438709400019 Publication Date 2018-06-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 161 Open Access OpenAccess
  Notes ; This research work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech),” by the China Scholarship Council (Y.T. and K.W.), by the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (L.P., J.F. and A.S.U.). E.B. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors would like to thank Alexander Richter for helpful discussions. ; ecas_Sara Approved Most recent IF: 19.791
  Call Number UA @ lucian @ c:irua:152413UA @ admin @ c:irua:152413 Serial 5129
Permanent link to this record
 

 
Author Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F.
  Title Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 30 Issue 30 Pages 6877-6883
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Indium phosphide colloidal quantum dots (QDs) are emerging as an efficient cadmium-free alternative for optoelectronic applications. Recently, syntheses based on easy-to-implement aminophosphine precursors have been developed. We show by solid-state nuclear magnetic resonance spectroscopy that this new approach allows oxide-free indium phosphide core or core/shell quantum dots to be made. Importantly, the oxide-free core/shell interface does not help in achieving higher luminescence efficiencies. We demonstrate that in the case of InP/ZnS and InP/ZnSe QDs, a more pronounced oxidation concurs with a higher photoluminescence efficiency. This study suggests that a II-VI shell on a III-V core generates an interface prone to defects. The most efficient InP/ZnS or InP/ZnSe QDs are therefore made with an oxide buffer layer between the core and the shell: it passivates these interface defects but also results in a somewhat broader emission line width.
  Address
  Corporate Author Thesis
  Publisher American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000447237800031 Publication Date 2018-09-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 74 Open Access OpenAccess
  Notes ; The authors thank L. Biadala and C. Delerue for fruitful discussion. Z.H. acknowledges support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), by Research Foundation Flanders (Project 17006602), and by Ghent University (GOA No. 01G01513). Z.H., M.D.T., and D.D. acknowledge the Strategisch Initiatief Materialen in Vlaanderen of Agentschap Innoveren en Ondernemen (SIM VLAIO), vzw (SBO-QDOCCO, ICON-QUALIDI). This work was supported by the Universite Paul Sabatier, the Region Midi-Pyrenees, the CNRS, the Institut National des Sciences Appliquees of Toulouse, and the Agence Nationale pour la Recherche (Project ANR-13-IS10-0004-01). E.A.B. is grateful to Marie Curie Actions and Campus France for a PRESTIGE postdoc fellowship (FP7 /2007-2013) under REA Grant Agreement PCOFUND-GA-2013-609102. E.B. acknowledges financial support from Research Foundation Flanders (FWO). ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:154732UA @ admin @ c:irua:154732 Serial 5109
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J.
  Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 30 Issue 14 Pages 4788-4798
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.
  Address
  Corporate Author Thesis
  Publisher American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000440105500037 Publication Date 2018-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:153156 Serial 5107
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L.
  Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 30 Issue 32 Pages 1802173
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000440813300022 Publication Date 2018-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access
  Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791
  Call Number UA @ lucian @ c:irua:153106 Serial 5105
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G.
  Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 30 Issue 38 Pages 1707017
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000444671900002 Publication Date 2018-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access
  Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791
  Call Number UA @ lucian @ c:irua:153628 Serial 5098
Permanent link to this record
 

 
Author De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A.
  Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 30 Issue 23 Pages 8521-8527
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000453489300014 Publication Date 2018-11-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 7 Open Access
  Notes ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466
  Call Number UA @ admin @ c:irua:156235 Serial 5227
Permanent link to this record
 

 
Author Tran Phong Le, P.; Hofhuis, K.; Rana, A.; Huijben, M.; Hilgenkamp, H.; Rijnders, G.A.J.H.M.; ten Elshof, J.E.; Koster, G.; Gauquelin, N.; Lumbeeck, G.; Schuessler-Langeheine, C.; Popescu, H.; Fortuna, F.; Smit, S.; Verbeek, X.H.; Araizi-Kanoutas, G.; Mishra, S.; Vaskivskyi, I.; Duerr, H.A.; Golden, M.S.
  Title Tailoring vanadium dioxide film orientation using nanosheets : a combined microscopy, diffraction, transport, and soft X-ray in transmission study Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume (up) 30 Issue 1 Pages 1900028
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Vanadium dioxide (VO2) is a much-discussed material for oxide electronics and neuromorphic computing applications. Here, heteroepitaxy of VO2 is realized on top of oxide nanosheets that cover either the amorphous silicon dioxide surfaces of Si substrates or X-ray transparent silicon nitride membranes. The out-of-plane orientation of the VO2 thin films is controlled at will between (011)(M1)/(110)(R) and (-402)(M1)/(002)(R) by coating the bulk substrates with Ti0.87O2 and NbWO6 nanosheets, respectively, prior to VO2 growth. Temperature-dependent X-ray diffraction and automated crystal orientation mapping in microprobe transmission electron microscope mode (ACOM-TEM) characterize the high phase purity, the crystallographic and orientational properties of the VO2 films. Transport measurements and soft X-ray absorption in transmission are used to probe the VO2 metal-insulator transition, showing results of a quality equal to those from epitaxial films on bulk single-crystal substrates. Successful local manipulation of two different VO2 orientations on a single substrate is demonstrated using VO2 grown on lithographically patterned lines of Ti0.87O2 and NbWO6 nanosheets investigated by electron backscatter diffraction. Finally, the excellent suitability of these nanosheet-templated VO2 films for advanced lensless imaging of the metal-insulator transition using coherent soft X-rays is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000505545800010 Publication Date 2019-10-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited 1 Open Access OpenAccess
  Notes P.T.P.L. and K.H. contributed equally to this work. The authors thank Mark A. Smithers for performing high-resolution scanning electron microscopy and electron backscattering diffraction. The authors also thank Dr. Nicolas Jaouen for his contribution to the soft X-ray imaging experiments. This work is part of the DESCO research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). P.T.P.L. acknowledges the NWO/CW ECHO grant ECHO.15.CM2.043. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the FLAG-ERA JTC 2017 project GRAPH-EYE. G.L. acknowledges financial support from the Flemish Research Fund (FWO) under project G.0365.15N. I.V. acknowledges support by the U.S. Department of Energy, Office of Science under Award Number 0000231415. Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number UA @ admin @ c:irua:165705 Serial 6325
Permanent link to this record
 

 
Author Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M.
  Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume (up) 30 Issue 41 Pages 2000238
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000532830900001 Publication Date 2020-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited Open Access OpenAccess
  Notes (Not present) Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number EMAT @ emat @c:irua:169485 Serial 6422
Permanent link to this record
 

 
Author Canossa, S.; Wuttke, S.
  Title Functionalization chemistry of porous materials Type Editorial
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume (up) 30 Issue 41 Pages 2003875
  Keywords Editorial; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000580514700004 Publication Date 2020-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19 Times cited 1 Open Access OpenAccess
  Notes ; ; Approved Most recent IF: 19; 2020 IF: 12.124
  Call Number UA @ admin @ c:irua:173614 Serial 6524
Permanent link to this record
 

 
Author Safdar, M.; Khan, S.U.; Jänis, J.
  Title Progress toward catalytic micro- and nanomotors for biomedical and environmental applications Type A1 Journal article
  Year 2018 Publication Advanced Materials Abbreviated Journal
  Volume (up) 30 Issue 24 Pages 1703660
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Synthetic micro‐ and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000436455800006 Publication Date 2018-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:175426 Serial 8424
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Millange, F.; Caignaert, V.; Hervieu, M.; Raveau, B.
  Title Structural phase transition at low temperature, corresponding to charge ordering in the CMR perovskites LN0.5A0.5MNO3 Type A1 Journal article
  Year 1996 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
  Volume (up) 31 Issue 8 Pages 905-911
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The magneto resistive perovskites Nd0.5Sr0.5MnO3 and Pr0.5Sr0.41Ca0.09MnO3 undergo a transition from anti ferromagnetic insulator to ferromagnetic metal as function of temperature. The room temperature phase is orthorhombic with the space group Imma and the cell parameters a approximate to root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p). A structural phase transition related to charge ordering accompanying the transition from ferromagnetic state to antiferromagnetic state has been evidenced by low temperature electron diffraction. This transition is reversible and a new superstructure, with a P-type orthorhombic cell. and lattice parameters parameters a approximate to 2 root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p), is formed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos A1996UZ37300002 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.288 Times cited 25 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:99650 Serial 3246
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H.
  Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 31 Issue 31 Pages 1805580
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000465600000001 Publication Date 2019-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 74 Open Access OpenAccess
  Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:160392 Serial 5239
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y.
  Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 31 Issue 10 Pages 1805970
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460329300004 Publication Date 2019-01-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access
  Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:158553 Serial 5245
Permanent link to this record
 

 
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L.
  Title Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 31 Issue 31 Pages 2182-2190
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000462950400038 Publication Date 2019-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 58 Open Access OpenAccess
  Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved Most recent IF: 9.466
  Call Number UA @ admin @ c:irua:159414 Serial 5250
Permanent link to this record
 

 
Author Wang, F.; Gao, T.; Zhang, Q.; Hu, Z.-Y.; Jin, B.; Li, L.; Zhou, X.; Li, H.; Van Tendeloo, G.; Zhai, T.
  Title Liquid-alloy-assisted growth of 2D ternaryGa2In4S9 toward high-performance UV photodetection Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume (up) 31 Issue 2 Pages 1806306
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract 2D ternary systems provide another degree of freedom of tuning physical properties through stoichiometry variation. However, the controllable growth of 2D ternary materials remains a huge challenge that hinders their practical applications. Here, for the first time, by using a gallium/indium liquid alloy as the precursor, the synthesis of high-quality 2D ternary Ga2In4S9 flakes of only a few atomic layers thick (approximate to 2.4 nm for the thinnest samples) through chemical vapor deposition is realized. Their UV-light-sensing applications are explored systematically. Photodetectors based on the Ga2In4S9 flakes display outstanding UV detection ability (R-lambda = 111.9 A W-1, external quantum efficiency = 3.85 x 10(4)%, and D* = 2.25 x 10(11) Jones@360 nm) with a fast response speed (tau(ring) approximate to 40 ms and tau(decay) approximate to 50 ms). In addition, Ga2In4S9-based phototransistors exhibit a responsivity of approximate to 10(4) A W-1@360 nm above the critical back-gate bias of approximate to 0 V. The use of the liquid alloy for synthesizing ultrathin 2D Ga2In4S9 nanostructures may offer great opportunities for designing novel 2D optoelectronic materials to achieve optimal device performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000455111100013 Publication Date 2018-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 29 Open Access Not_Open_Access
  Notes ; F.K.W., T.G, and Q.Z. contributed equally to this work. The authors acknowledge the support from National Nature Science Foundation of China (21825103, 51727809, 51472097, 91622117, and 51872069), National Basic Research Program of China (2015CB932600), and the Fundamental Research Funds for the Central Universities (2017KFKJXX007, 2015ZDTD038, 2017III055, and 2018III039GX). The authors thank the Analytical and Testing Centre of Huazhong University of Science and Technology. ; Approved Most recent IF: 19.791
  Call Number UA @ admin @ c:irua:156756 Serial 5254
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M.
  Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 31 Issue 6 Pages 1981-1989
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000462950400017 Publication Date 2019-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess
  Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466
  Call Number UA @ admin @ c:irua:159413 Serial 5262
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F.
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 31 Issue 15 Pages 5900-5908
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000480826900060 Publication Date 2019-08-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 6 Open Access
  Notes ; ; Approved Most recent IF: 9.466
  Call Number EMAT @ emat @c:irua:161814 Serial 5291
Permanent link to this record
 

 
Author Dobrota, A.S.; Vlahovic, J.; V. Skorodumova, N.; Pasti, I.A.
  Title First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons – from adatom bonding to various Type A1 Journal article
  Year 2022 Publication Materials Today Communications Abbreviated Journal
  Volume (up) 31 Issue Pages 103388-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000820987400002 Publication Date 2022-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2352-4928 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:189563 Serial 7163
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M.
  Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal
  Volume (up) 31 Issue 13 Pages 4805-4816
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000475408400021 Publication Date 2019-06-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:161225 Serial 8465
Permanent link to this record
 

 
Author Jain, R.; Rather, J.A.; Dwivedi, A.
  Title Voltammetric behaviour of nitroxazepine in solubilized system and biological fluids Type A1 Journal article
  Year 2011 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal
  Volume (up) 31 Issue 2 Pages 230-237
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract This study reports the development and validation of sensitive and selective assay method for the determination of the antidepressant drug in solubilized system and biological fluids. Solubilized system of different surfactants including cationic, anionic and non-ionic influences the electrochemical response of drug. Addition of cationic surfactant cetrimide to the solution containing drug enhances the peak current signal while anionic and non-ionic showed an opposite effect. The current signal due to reduction process was function of concentration of nitroxazepine, pH, type of surfactant and preconcentration time at the electrode surface. The reduction process is irreversible and adsorption controlled at HMDE. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for niroxazepine hydrochloride determination. The proposed SWCAdSV and DPCAdSV methods are linear over the concentration range 2.0 × 10-7 5.0 × 10-9 mol/L and 6.1 × 10-7 1.0 × 10-8 mol/L with detection limit of 1.62 × 10-10 mo/L and 1.4 × 10-9 mo/L respectively. The method shows good sensitivity, selectivity, accuracy and precision that makes it very suitable for determination of nitroxazepine in pharmaceutical formulation and biological fluids.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000286707900024 Publication Date 2010-09-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:98685 Serial 8743
Permanent link to this record
 

 
Author Parrilla, M.; De Wael, K.
  Title Wearable self‐powered electrochemical devices for continuous health management Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume (up) 31 Issue 50 Pages 2107042
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000694642500001 Publication Date 2021-09-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 12.124
  Call Number UA @ admin @ c:irua:181306 Serial 8750
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater
  Volume (up) 32 Issue 12 Pages E327-E337
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000389516400003 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.07 Times cited 47 Open Access
  Notes Approved Most recent IF: 4.07
  Call Number UA @ lucian @ c:irua:140246 Serial 4447
Permanent link to this record
 

 
Author Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F.V.; Rabouw, F.T.; De Trizio, L.; Geuchies, J.J.; Mulder, J.T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A.J.
  Title Locating and controlling the Zn content in In(Zn)P quantum dots Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (up) 32 Issue 32 Pages 557-565
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs is debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn-carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high resolution high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn-acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn-carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature, and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn-carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000507721600056 Publication Date 2019-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess
  Notes A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs. SB acknowledges funding from the European Research Council (grant 815128 REALNANO). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and a postdoctoral grant to A.D.B. AJH, LM and JM acknowledge support from the H2020 Collaborative Project TEQ (Grant No. 766900).; sygma Approved Most recent IF: 9.466
  Call Number EMAT @ emat @c:irua:165234 Serial 5438
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K.
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
  Volume (up) 32 Issue 7 Pages 2863-2873
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000526394000016 Publication Date 2020-04-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess
  Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466
  Call Number EMAT @ emat @c:irua:168819 Serial 6363
Permanent link to this record
 

 
Author Jorgensen, M.; Shea, P.T.; Tomich, A.W.; Varley, J.B.; Bercx, M.; Lovera, S.; Cerny, R.; Zhou, W.; Udovic, T.J.; Lavallo, V.; Jensen, T.R.; Wood, B.C.; Stavila, V.
  Title Understanding superionic conductivity in lithium and sodium salts of weakly coordinating closo-hexahalocarbaborate anions Type A1 Journal article
  Year 2020 Publication Chemistry of materials Abbreviated Journal
  Volume (up) 32 Issue 4 Pages 1475-1487
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Solid-state ion conductors based on closo-polyborate anions combine high ionic conductivity with a rich array of tunable properties. Cation mobility in these systems is intimately related to the strength of the interaction with the neighboring anionic network and the energy for reorganizing the coordination polyhedra. Here, we explore such factors in solid electrolytes with two anions of the weakest coordinating ability, [HCB11H5Cl6](-) and [HCB11H5Br6](-), and a total of 11 polymorphs are identified for their lithium and sodium salts. Our approach combines ab initio molecular dynamics, synchrotron X-ray powder diffraction, differential scanning calorimetry, and AC impedance measurements to investigate their structures, phase-transition behavior, anion orientational mobilities, and ionic conductivities. We find that M(HCB11H5X6) (M = Li, Na, X = Cl, Br) compounds exhibit order-disorder polymorphic transitions between 203 and 305 degrees C and display Li and Na superionic conductivity in the disordered state. Through detailed analysis, we illustrate how cation disordering in these compounds originates from a competitive interplay among the lattice symmetry, the anion reorientational mobility, the geometric and electronic asymmetry of the anion, and the polarizability of the halogen atoms. These factors are compared to other closo-polyborate-based ion conductors to suggest guidelines for optimizing the cation-anion interaction for fast ion mobility. This study expands the known solid-state poly(carba)borate-based materials capable of liquid-like ionic conductivities, unravels the mechanisms responsible for fast ion transport, and provides insights into the development of practical superionic solid electrolytes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000517351300014 Publication Date 2020-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 5 Open Access OpenAccess
  Notes ; The authors gratefully acknowledge support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. AC04-94AL85000. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-NA-0003525. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. ACS2-07NA27344. We also gratefully thank Kyoung Kweon for useful discussions. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Danish council for independent research, technology and production, HyNanoBorN (4181-00462) and SOS-MagBat (9041-00226B) and NordForsk, The Nordic Neutron Science Program, project FunHy (81942), and the Carlsberg Foundation are acknowledged for funding. Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged. V.L. acknowledges the NSF for partial support of this project (DMR-1508537). The authors would like to thank the Swiss-Norwegian beamlines (BM01) at the ESRF, Grenoble, for the help with the data collection, DESY for access to Petra III, at beamline P02.1, and Diamond for access to beamline I11. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:167754 Serial 6645
Permanent link to this record
 

 
Author Imran, M.; Ramade, J.; Di Stasio, F.; De Franco, M.; Buha, J.; Van Aert, S.; Goldoni, L.; Lauciello, S.; Prato, M.; Infante, I.; Bals, S.; Manna, L.
  Title Alloy CsCdxPb1–xBr3Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
  Volume (up) 32 Issue Pages acs.chemmater.0c03825
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Various strategies have been proposed to engineer the band gap of metal halide perovskite nanocrystals (NCs) while preserving their structure and composition and thus ensuring spectral stability of the emission color. An aspect that has only been marginally investigated is how the type of surface passivation influences the structural/color stability of AMX3 perovskite NCs composed of two different M2+ cations. Here, we report the synthesis of blue-emitting Cs-oleate capped CsCdxPb1–xBr3 NCs, which exhibit a cubic perovskite phase containing Cd-rich domains of Ruddlesden–Popper phases (RP phases). The RP domains spontaneously transform into pure orthorhombic perovskite ones upon NC aging, and the emission color of the NCs shifts from blue to green over days. On the other hand, postsynthesis ligand exchange with various Cs-carboxylate or ammonium bromide salts, right after NC synthesis, provides monocrystalline NCs with cubic phase, highlighting the metastability of RP domains. When NCs are treated with Cs-carboxylates (including Cs-oleate), most of the Cd2+ ions are expelled from NCs upon aging, and the NCs phase evolves from cubic to orthorhombic and their emission color changes from blue to green. Instead, when NCs are coated with ammonium bromides, the loss of Cd2+ ions is suppressed and the NCs tend to retain their blue emission (both in colloidal dispersions and in electroluminescent devices), as well as their cubic phase, over time. The improved compositional and structural stability in the latter cases is ascribed to the saturation of surface vacancies, which may act as channels for the expulsion of Cd2+ ions from NCs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000603288800034 Publication Date 2020-12-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.6 Times cited 44 Open Access OpenAccess
  Notes European Commission; Fonds Wetenschappelijk Onderzoek, G.0267.18N ; H2020 European Research Council, 770887 815128 851794 ; We acknowledge funding from the FLAG-ERA JTC2019 project PeroGas. S.B., and S.V.A. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants #815128REALNANO and #770887PICOMETRICS) and from the Research Foundation Flanders (FWO, Belgium) through project funding G.0267.18N. F.D.S. acknowledges the funding from ERC starting grant NANOLED (851794). The computational work was carried out on the Dutch National e-infrastructure with the support of the SURF Cooperative; sygma Approved Most recent IF: 8.6; 2020 IF: 9.466
  Call Number EMAT @ emat @c:irua:174004 Serial 6659
Permanent link to this record
 

 
Author Ferreira da Costa, L.; de Lucena, L.C.F.L.; de Lucena, A.E.F.L.; Grangeiro de Barros, A.
  Title Use of Banana Fibers in SMA Mixtures Type A1 Journal article
  Year 2020 Publication Journal Of Materials In Civil Engineering Abbreviated Journal J Mater Civil Eng
  Volume (up) 32 Issue 1 Pages 04019341
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB)
  Abstract Asphalt binder draindown is a potential issue related to stone matrix asphalt (SMA) mixtures. One convenient approach for reducing binder drainage is the use of fibers as stabilizing additives. This study assesses the feasibility of incorporating fibers from banana plants into an SMA mixture as a proposed use for residues from banana cultivation. We found the fiber content capable of preventing draindown and subsequently evaluated the influence of fiber length on the mechanical properties of an SMA mixture. Samples were prepared in a Superpave gyratory compactor with four different fiber lengths (5, 10, 15, and 20 mm) at a fixed content (0.3% by weight) and then compared to samples without fibers. Indirect tensile strength, resilient and dynamic modulus, flow number, and fatigue life tests were conducted. Overall, fibers improved the mechanical properties analyzed. These enhancements were more pronounced for the samples with 15- and 20-mm fibers. Thus, a smaller number of longer fibers was more beneficial to the fiber reinforcement of mixtures than a larger number of shorter fibers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000497709300014 Publication Date 2019-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0899-1561 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited Open Access
  Notes Approved Most recent IF: 3.2; 2020 IF: 1.644
  Call Number UA @ admin @ c:irua:178728 Serial 8719
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M.
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal
  Volume (up) 33 Issue 1 Pages 102-116
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000610984700009 Publication Date 2020-12-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 10 Open Access OpenAccess
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:176587 Serial 6732
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: