|   | 
Details
   web
Records
Author Grieten, E.; Storme, P.; Caen, J.; Schalm, O.; Schryvers, D.
Title Application of atmospheric plasma-jets for the conservation of cultural heritage Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149629 Serial 7466
Permanent link to this record
 

 
Author Yang, T.
Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages ii, 106 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196404 Serial 7631
Permanent link to this record
 

 
Author Samaee, V.
Title In-situ transmission electron microscopic nanomechanical investigations of Ni Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume (up) Issue Pages 172 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156143 Serial 8075
Permanent link to this record
 

 
Author Gauquelin, N.; Forte, F.; Jannis, D.; Fittipaldi, R.; Autieri, C.; Cuono, G.; Granata, V.; Lettieri, M.; Noce, C.; Miletto-Granozio, F.; Vecchione, A.; Verbeeck, J.; Cuoco, M.
Title Pattern Formation by Electric-Field Quench in a Mott Crystal Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume (up) Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The control of Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2 RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron

microscopy. The nanotexture depends on the orientation of the electric field, it is non-volatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of non-volatile electronics based on voltage-controlled nanometric phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001012061600001 Publication Date 2023-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 2 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innova- tion programme under grant agreement No 823717 – ESTEEM3. The Merlin camera used in the experiment received funding from the FWO-Hercules fund G0H4316N ’Direct electron detector 15for soft matter TEM’. C. A. and G. C. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. and G. C. acknowledge the access to the computing facil- ities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. GB84-0, GB84-1 and GB84-7 and GB84-7 and Poznan Supercomputing and Networking Center Grant No. 609.. C. A. and G. C. acknowledge the CINECA award under the ISCRA initiative IsC85 “TOP- MOST” Grant, for the availability of high-performance computing resources and support. We acknoweldge A. Guarino and C. Elia for providing support about the electrical characterization of the sample. M.C., R.F., and A.V. acknowledge support from the EU’s Horizon 2020213 research and innovation program under Grant Agreement No. 964398 (SUPERGATE). Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:196970 Serial 8789
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume (up) Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Sa, J.; Hu, N.; Heyvaert, W.; Van Gordon, K.; Li, H.; Wang, L.; Bals, S.; Liz-Marzán, L.M.; Ni, W.
Title Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal Chem. Mater.
Volume (up) Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Chiral ligands are considered a required ingredient during the synthesis of dissymmetric plasmonic metal nanocrystals. The mechanism behind the generation of chiral structures involves the formation of high Miller index chiral facets, induced by the adsorption of such chiral ligands. We found however that, chirality can also evolve spontaneously, without the involvement of any chiral ligands, during the co-deposition of Au and Ag on Au nanorods. When using a specific Au/Ag ratio, phase segregation of the two metals leads to an interface within the obtained AuAg shell, which can be exposed by removing the Ag component via oxidative etching. Although a close-to-racemic mixture of chiral Au nanorods with right and left handedness is found in solution, electron tomography analysis evidences left- and righthanded helicities, both at the Au-Ag interface and at the exposed surface of Au NRs after Ag etching. The helicity profile of the NRs indicates dominating inclination angles in a range from 30° to 60°. Single-particle optical characterization also reveals random handedness in the plasmonic response of individual nanorods. We hypothesize that, the origin of chirality is related with symmetry breaking during the co-deposition of Au and Ag, through an initial perturbation in a small region on the Au-Ag interface that eventually leads to chiral segregation throughout the nanocrystal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052093300001 Publication Date 2023-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access OpenAccess
Notes The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 22074102). LMLM acknowledges funding from 26 MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020- 117779RB-I00). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3.; Ministerio de Ciencia e Innovaci?n, PID2020-117779RB-I00 ; H2020 Research Infrastructures, 823717 ; European Social Fund, PID2020-117779RB-I00 ; National Natural Science Foundation of China, 22074102 ; Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number EMAT @ emat @c:irua:198151 Serial 8810
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V.
Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (up) Issue Pages 1-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001047512300001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 1 Open Access Not_Open_Access: Available from 25.01.2024
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:198290 Serial 8819
Permanent link to this record
 

 
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S.
Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
Year 2023 Publication Particle and particle systems characterization Abbreviated Journal
Volume (up) 41 Issue 2 Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060394600001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access Not_Open_Access
Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved Most recent IF: 2.7; 2023 IF: 4.474
Call Number UA @ admin @ c:irua:199219 Serial 8863
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume (up) Issue Pages e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Friedrich, T.
Title Quantifying atomic structures using neural networks from 4D scanning transmission electron microscopy (STEM) datasets Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages 127 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Nanoscience and nanotechnologies are of immense importance across many fields of science and for numerous practical applications. In this context, scanning transmission electron microscopy (STEM) and 4D-STEM are among the most powerful characterization methods at the atomic scale. Annular dark-field (ADF)-STEM can be used to quantify atomic structures in 3D by counting atoms based on a single projection image. In 4D-STEM a full diffraction pattern is recorded at each scan step, which enables more dose efficient imaging and the utilization of various advanced imaging modalities, which can however be complex and slow. Both, STEM and 4D-STEM suffer from noise and distortions. In the first section of this work the most important of these distortions are discussed and it is shown how image restoration with a dedicated convolutional neural network (CNN) can be beneficial for atomic structure quantifications in ADF-STEM. In the second part, a new 4D-STEM imaging method real-time-integrated-centre-of-mass (riCOM) is introduced, which is a very dose-efficient and fast algorithm that enables unprecedented live-imaging capabilities for 4D-STEM. It is based on the integrated centre-of-mass approach, but is reformulated with variable integration ranges and optional filters, which allows for a tunable contrast transfer function. This enables the imaging of light and heavy elements simultaneously at very low doses. In the third part another new 4D-STEM method, coined AIRPI (AI-assisted rapid phase imaging) is introduced, which uses a CNN to retrieve a patch of the specimen's phase image for each scan position, based on the diffraction patterns in the probe's immediate surroundings. This allows also live imaging in principle and surpasses comparable state-of-the-art algorithms in terms of resolution also at low doses. Different atomic columns can be reliably distinguished over a wide range of atomic numbers, enabling a very good image interpretability. Further, AIRPI can recover low frequency image components, which preserves thickness information. This is a unique and important feature which could make quantitative 4D-STEM feasible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196826 Serial 8919
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J.
Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
Year 2022 Publication Chemistry of materials Abbreviated Journal
Volume (up) Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823205700001 Publication Date 2022-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 2 Open Access OpenAccess
Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no
Call Number UA @ admin @ c:irua:189541 Serial 8928
Permanent link to this record
 

 
Author Moggia, G.; Hoekx, S.; Daems, N.; Bals, S.; Breugelmans, T.
Title Synthesis and characterization of a highly electroactive composite based on Au nanoparticles supported on nanoporous activated carbon for electrocatalysis Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume (up) Issue Pages 1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A facile, “one-pot”, chemical approach to synthesize gold-based nanoparticles finely dispersed on porous activated carbon (Norit) was demonstrated in this work. The pH of the synthesis bath played a critical role in determining the optimal gold-carbon interaction, which enabled a successful deposition of the gold nanoparticles onto the carbon matrix with a maximized metal utilization of 93 %. The obtained AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques. It was found that the Au nanoparticles, with diameters between 5 and 20 nm, were evenly distributed over the carbon matrix, both inside and outside the pores. Electrochemical characterization indicated that the composite had a very large electroactive surface area (EASA), as high as 282.4 m2 gAu-1. By exploiting its very high EASA, the catalyst was intended to boost the productivity of glucaric acid in the electrooxidation of its precursor, gluconic acid. However, cyclic voltammetry experiments revealed a very limited reactivity towards gluconic acid oxidation, due to the spacial hindrance of gluconic acid molecule which prevented diffusion inside the catalyst nanopores. On the other hand, the as-synthesized nanocomposite promises to be effective towards the ORR, and might thus find potential application as anode catalyst for fuel cells as well as for the scalability of all those electrochemical reactions involving small molecules with high diffusivity and catalysed by noble metals (i. e. CO2, CH4, N2, etc..). Electrocatalysis: Gold nanoparticles with diameter between 5 and 20 nm evenly distributed onto porous activated carbon (Norit) were obtained using a facile “one-pot” chemical synthesis technique with very high metal utilization. The AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques, revealing a very large electroactive surface area (EASA). The figure shows the HAADF-STEM image (a) and the respective EDX elemental distribution (b) for the AuNP/C composite with 9.3 % Au-loading developed in this work (Au is marked in red and C in green).image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060398900001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 1 Open Access OpenAccess
Notes The research described in this article has not been supported by the Climate, Infrastructure and Environment Executive Agency of the European Commission. The views expressed in this article have not been adopted or in any way approved by the European Commission and do not constitute a statement of the European Commission & apos;s views.r S. Hoekx was supported by Research Foundation Flanders (FWO 1S42623N). The authors would like to thank Prof. Dr. Christophe Vande Velde, University of Antwerp, for the XRD analysis. Approved Most recent IF: 4; 2023 IF: 4.136
Call Number UA @ admin @ c:irua:199210 Serial 8941
Permanent link to this record
 

 
Author Bercx, M.; Mayda, S.; Depla, D.; Partoens, B.; Lamoen, D.
Title Plasmonic effects in the neutralization of slow ions at a metallic surface Type A1 Journal Article
Year 2023 Publication Contributions to Plasma Physics Abbreviated Journal Contrib. Plasma Phys
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Secondary electron emission is an important process that plays a significant role in several plasma‐related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliable yield data is critical as input for higher‐scale simulations. Here, we build upon our previous work combining density functional theory calculations with a model originally developed by Hagstrum to extend its application to metallic surfaces. As plasmonic effects play a much more important role in the secondary electron emission mechanism for metals, we introduce an approach based on Poisson point processes to include both surface and bulk plasmon excitations to the process. The resulting model is able to reproduce the yield spectra of several available experimental results quite well but requires the introduction of global fitting parameters, which describe the strength of the plasmon interactions. Finally, we use an in‐house developed workflow to calculate the electron yield for a list of elemental surfaces spanning the periodic table to produce an extensive data set for the community and compare our results with more simplified approaches from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067651300001 Publication Date 2023-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access Not_Open_Access
Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number EMAT @ emat @c:irua:200330 Serial 8962
Permanent link to this record
 

 
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J.
Title Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001092787000001 Publication Date 2023-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access OpenAccess
Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:200590 Serial 8963
Permanent link to this record
 

 
Author de la Croix, T.; Claes, N.; Eyley, S.; Thielemans, W.; Bals, S.; De Vos, D.
Title Heterogeneous Pt-catalyzed transfer dehydrogenation of long-chain alkanes with ethylene Type A1 Journal Article
Year 2023 Publication Catalysis Science & Technology Abbreviated Journal Catal. Sci. Technol.
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The dehydrogenation of long-chain alkanes to olefins and alkylaromatics is a challenging endothermic reaction, typically requiring harsh conditions which can lead to low selectivity and coking. More favorable thermodynamics can be achieved by using a hydrogen acceptor, such as ethylene. In this work, the potential of heterogeneous platinum catalysts for the transfer dehydrogenation of long-chain alkanes is investigated, using ethylene as a convenient hydrogen acceptor. Pt/C and Pt–Sn/C catalysts were prepared<italic>via</italic>a simple polyol method and characterized with CO pulse chemisorption, HAADF-STEM, and EDX measurements. Conversion of ethylene was monitored<italic>via</italic>gas-phase FTIR, and distribution of liquid products was analyzed<italic>via</italic>GC-FID, GC-MS, and 1H-NMR. Compared to unpromoted Pt/C, Sn-promoted catalysts show lower initial reaction rates, but better resistance to catalyst deactivation, while increasing selectivity towards alkylaromatics. Both reaction products and ethylene were found to inhibit the reaction significantly. At 250 °C for 22 h, TON up to 28 and 86 mol per mol Pt were obtained for Pt/C and PtSn<sub>2</sub>/C, respectively, with olefin selectivities of 94% and 53%. The remaining products were mainly unbranched alkylaromatics. These findings show the potential of simple heterogeneous catalysts in alkane transfer dehydrogenation, for the preparation of valuable olefins and alkylaromatics, or as an essential step in various tandem reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001104905100001 Publication Date 2023-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record
Impact Factor 5 Times cited Open Access OpenAccess
Notes T. de la Croix gratefully acknowledges the support of the Flanders Research Foundation (FWO) under project 11F6622N. D. De Vos is grateful to FWO for support of project G0D3721N, and to KU Leuven for the iBOF project 21/016/C3. S. Bals and N. Claes acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128- REALNANO). W. Thielemans and S. Eyley thank KU Leuven (grant C14/18/061) and FWO (G0A1219N) for financial support. Approved Most recent IF: 5; 2023 IF: 5.773
Call Number EMAT @ emat @c:irua:201010 Serial 8968
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J.
Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 001174840900001 Publication Date 2024-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access Not_Open_Access
Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
Call Number EMAT @ emat @c:irua:204354 Serial 8997
Permanent link to this record
 

 
Author Mychinko, M.
Title Advanced Electron Tomography to Investigate the Growth and Stability of Complex Metal Nanoparticles = Geavanceerde Elektronentomografie om de Groei en Stabiliteit van Complexe Metallische Nanodeeltjes te Onderzoeken Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume (up) Issue Pages 227 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract During the past decades, metallic nanoparticles (NPs) have attracted great attention in materials science due to their specific optical properties based on surface plasmon resonances. Because of these phenomena, plasmonic NPs (or nanoplasmonics) are very promising for application in biosensing, photocatalysts, medicine, data storage, solar energy conversion, etc. Currently, colloidal synthesis techniques enable scientists to routinely produce mono and bimetallic NPs of various shapes, sizes, composition, and elemental distribution, with superior properties for plasmonic applications. Two primary directions for further advancing nanoplasmonic-based technologies include synthesizing novel morphologies, such as highly asymmetric chiral NPs, and gaining deeper insights into the factors affecting the stability of produced nanoplasmonics. With the increasing complexity of nanoplasmonics morphologies and higher stability requirements, there is a pressing need for thorough investigations into their 3D structures and their evolution under different conditions, with high resolution. Electron tomography (ET) emerges as an ideal tool to retrieve shape and element-sensitive information about individual nanoparticles in 3D, achieving resolutions down to the atomic level. Moreover, ET techniques can be combined with in situ holders, enabling detailed studies of processes mimicking real applications of nanoplasmonic-based devices. The first part of this thesis will focus on detailed studies of chiral Au NPs, promising for spectroscopy techniques based on the differential absorption of left- and right-handed circularly polarized light. Specifically, I will discuss the primary strategies for wet-colloidal growth of the various types of intrinsically chiral Au NPs. Advanced ET methods will be demonstrated as powerful tools for characterizing the final helical morphologies of the produced Au NPs and for studying the chiral growth mechanisms by examining intermediate structures obtained during chiral growth. The second part will focus on the heat-induced stability of various Au@Ag core-shell NPs. Operating in real conditions, such as elevated temperatures, may cause particle reshaping and redistribution of metals between the core and shell, gradually altering nanoplasmonics properties. Hence, a thorough understanding of the influence of size, shape, and defects on these processes is crucial for further developments. Recently developed techniques, combining fast ET with in-situ heating holders, have allowed me to evaluate the influence of various parameters (size, shape, defect structure) on heat-induced elemental redistribution in Au@Ag core-shell nanoparticles qualitatively and quantitatively. Additionally, I will discuss the prospects of high-resolution ET for visualizing the diffusion of individual atoms within complex nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202976 Serial 9001
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode (Supporting Information) Type Dataset
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079191200001 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200933 Serial 9010
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.
Title Core-loss EELS dataset and neural networks for element identification Type Dataset
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203391 Serial 9015
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A.
Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
Year 2023 Publication Journal of visualized experiments Abbreviated Journal
Volume (up) Issue 201 Pages e65563-30
Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127854400015 Publication Date 2023-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.232
Call Number UA @ admin @ c:irua:200770 Serial 9019
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P.
Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203392 Serial 9042
Permanent link to this record
 

 
Author Yu, C.-P.
Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages x, 154 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 987-90-5728-534-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200885 Serial 9064
Permanent link to this record
 

 
Author Poppe, R.
Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages iv, 150 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200610 Serial 9084
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Chakraborty, J.; Chatterjee, A.; Molkens, K.; Nath, I.; Arenas Esteban, D.; Bourda, L.; Watson, G.; Liu, C.; Van Thourhout, D.; Bals, S.; Geiregat, P.; Van der Voort, P.
Title Decoding Excimer Formation in Covalent–Organic Frameworks Induced by Morphology and Ring Torsion Type A1 Journal Article
Year 2024 Publication Advanced Materials Abbreviated Journal Advanced Materials
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A thorough and quantitative understanding of the fate of excitons in covalent–organic frameworks (COFs) after photoexcitation is essential for their augmented optoelectronic and photocatalytic applications via precise structure tuning. The synthesis of a library of COFs having identical chemical backbone with impeded conjugation, but varied morphology and surface topography to study the effect of these physical properties on the photophysics of the materials is herein reported. The variation of crystallite size and surface topography substantified different aggregation pattern in the COFs, which leads to disparities in their photoexcitation and relaxation properties. Depending on aggregation, an inverse correlation between bulk luminescence decay time and exciton binding energy of the materials is perceived. Further transient absorption spectroscopic analysis confirms the presence of highly localized, immobile, Frenkel excitons (of diameter 0.3–0.5 nm) via an absence of annihilation at high density, most likely induced by structural torsion of the COF skeletons, which in turn preferentially relaxes via long‐lived (nanosecond to microsecond) excimer formation (in femtosecond scale) over direct emission. These insights underpin the importance of structural and topological design of COFs for their targeted use in photocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001206226700001 Publication Date 2024-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access
Notes PVDV, JC, AC, and IN acknowledge the FWO-Vlaanderen for research grant G020521N and the research board of UGent (BOF) through a Concerted Research Action (GOA010-17). JC acknowledges UGent for BOF postdoctoral grant (2022.0032.01). AC acknowledges FWO- Vlaanderen for postdoctoral grant (12T7521N). KM, DVT and PG acknowledges FWO- Vlaanderen for research grant G0B2921N. SB and DAE acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. CHL acknowledges China Scholarship Council doctoral grant (201908110280). PVDV acknowledges Hercules Project AUGE/17/07 for the UV VIS DRS spectrometer and UGent BASBOF BOF20/BAS/015 for the powder X-Ray Diffractometer. PG thanks UGent for support of the Core Facility NOLIMITS. Approved Most recent IF: 29.4; 2024 IF: 19.791
Call Number EMAT @ emat @c:irua:205967 Serial 9118
Permanent link to this record
 

 
Author Esteban, D.A.; Chamocho, E.G.; Carretero González, J.; Urones Garrote, E.; Otero Díaz, L.C.; Brande, D.Á.
Title Enhancing Electrochemical Properties of Walnut Shell Activated Carbon with Embedded MnO Clusters for Supercapacitor Applications Type A1 Journal Article
Year 2024 Publication Batteries & Supercaps Abbreviated Journal Batteries &amp; Supercaps
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Activated carbon (AC) materials from renewable sources are widely used in electrochemical applications due to their well‐known high surface area. However, their application as electrode material in double‐layer electrochemical devices may be limited due to their relatively low electrical conductivity and lightweight. To overcome these limitations, the incorporation of pseudocapacitance metal oxide nanoparticles is an optimum approach. These nanoparticles can provide a second energy storage mechanism to the composite, mitigating the loss of surface area associated with their incorporation. As a result, the composite material is endowed with increased conductivity and higher density, making it more suitable for practical implementation in real devices. In this study, we have incorporated a fine dispersion of 1 % of MnO clusters into a highly porous activated carbon synthesized from walnut shells (WAC). The high‐resolution electron microscopy studies, combined with their related analytical techniques, allow us to determine the presence of the cluster within the matrix carbon precisely. The resulting MnO@WAC composite demonstrated significantly improved capacitive behavior compared with the WAC material, with increased volumetric capacitance and higher charge retention at higher current densities. The composite‘s electrochemical performance suggests its potential as a promising electrode material for supercapacitors, addressing drawbacks associated with traditional AC materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198179300001 Publication Date 2024-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2566-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Grants PID2020-112848RB-C21 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union PRTR funding through projects are acknowledged. Access to the ICTS- CNME for TEM is also acknowledged. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:205463 Serial 9119
Permanent link to this record
 

 
Author Vlasov, E.; Heyvaert, W.; Ni, B.; Van Gordon, K.; Girod, R.; Verbeeck, J.; Liz-Marzán, L.M.; Bals, S.
Title High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods Type A1 Journal Article
Year 2024 Publication ACS Nano Abbreviated Journal ACS Nano
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links
Impact Factor 17.1 Times cited Open Access
Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.) and from MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021-097588 to K.V.G.). Funded by the European Union under Project 101131111 − DELIGHT, JV acknowledges the eBEAM project supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07- 2020: emerging paradigms and communities. Approved Most recent IF: 17.1; 2024 IF: 13.942
Call Number EMAT @ emat @ Serial 9121
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links
Impact Factor 9.5 Times cited Open Access
Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504
Call Number EMAT @ emat @ Serial 9126
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M.
Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed
Volume (up) Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links
Impact Factor 16.6 Times cited Open Access
Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994
Call Number EMAT @ emat @ Serial 9129
Permanent link to this record