toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
  Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
  Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron
  Volume (down) 16 Issue 16 Pages 227-233
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000345649500029 Publication Date 2014-11-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.399 Times cited 24 Open Access OpenAccess
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827
  Call Number c:irua:122169 Serial 2267
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B.
  Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (down) 16 Issue Pages 1715-1724
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000221345000019 Publication Date 2004-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 24 Open Access
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
  Call Number UA @ lucian @ c:irua:47318 Serial 2381
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
  Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume (down) 16 Issue 6 Pages 2588-2596
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000329926700040 Publication Date 2013-12-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 47 Open Access
  Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:114829 Serial 2525
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Pardo, J.A.; Santiso, J.
  Title Structure and microstructure of epitaxial Sr4Fe6O13-\delta films on SrTiO3 Type A1 Journal article
  Year 2004 Publication Chemistry and materials Abbreviated Journal Chem Mater
  Volume (down) 16 Issue Pages 2578-2584
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure and the microstructure of epitaxial Sr4Fe6O13+/-delta thin films grown on a single-crystal SrTiO3 substrate by PLD have been investigated. A combination of electron diffraction and high-resolution microscopy allows us to refine the structure and to identify an incommensurate modulation in the Sr4Fe6O13+/-delta films. The incommensurate structure (q = alphaa(m)* approximate to 0.39alpha(m)*, superspace group Xmmm(alpha00)0s0) can be interpreted as an oxygen-deficient modification in the Fe2O2.5 double layers. Moreover, it is shown that the experimentally determined a component of the modulation can be used consistently to estimate the local oxygen content in the Sr4Fe6O13+/-delta films. The compound composition can therefore be described as Sr4Fe6O12+2alpha and the value alpha = 0.39 corresponds to a Sr4Fe6O12.78 composition. The misfit stress along the Sr4Fe6O13+/-delta/SrTiO3 interface is accommodated via both elastic deformation and inelastic mechanisms (misfit dislocations and 90degrees rotation twins). The present results also suggest the existence of SrFeO3 perovskite in the Sr4Fe6O13+/-delta films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000222252300011 Publication Date 2004-06-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 26 Open Access
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
  Call Number UA @ lucian @ c:irua:54770 Serial 3286
Permanent link to this record
 

 
Author Albrecht, W.; Deng, T.-S.; Goris, B.; van Huis, M.A.; Bals, S.; van Blaaderen, A.
  Title Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
  Volume (down) 16 Issue 16 Pages 1818-1825
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.
  Address Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000371946300045 Publication Date 2016-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 55 Open Access OpenAccess
  Notes We thank Dr. Nicolas Gauquelin for his assistance during the EELS measurements and Thomas Atlantzis for the high-resolution images of the gold clusters. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement #291667 HierarSACol and the Foundation of Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The authors furthermore acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B.G.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712
  Call Number c:irua:131924 c:irua:131924 Serial 4016
Permanent link to this record
 

 
Author Paolella, A.; Turner, S.; Bertoni, G.; Hovington, P.; Flacau, R.; Boyer, C.; Feng, Z.; Colombo, M.; Marras, S.; Prato, M.; Manna, L.; Guerfi, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.;
  Title Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
  Volume (down) 16 Issue 16 Pages 2692-2697
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000374274600084 Publication Date 2016-03-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 30 Open Access
  Notes Approved Most recent IF: 12.712
  Call Number UA @ lucian @ c:irua:133600 Serial 4134
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K.
  Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
  Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
  Volume (down) 16 Issue 7 Pages 3699-3708
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000379456700020 Publication Date 2016-05-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.055 Times cited 8 Open Access
  Notes Approved Most recent IF: 4.055
  Call Number UA @ lucian @ c:irua:144690 Serial 4652
Permanent link to this record
 

 
Author Pearce, P.E.; Perez, A.J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A.M.; Van Tendeloo, G.; Doublet, M.-L.; Tarascon, J.-M.
  Title Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 Type A1 Journal article
  Year 2017 Publication Nature materials Abbreviated Journal Nat Mater
  Volume (down) 16 Issue 5 Pages 580-586
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g(-1). In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a beta-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e(-) per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O-2)(n-) redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, beta-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li-0, as equivalently observed in the layered alpha-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400004200018 Publication Date 2017-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 39.737 Times cited Open Access Not_Open_Access
  Notes The authors thank Q. Jacquet for fruitful discussions and V. Pomjakushin for his valuable help in neutron diffraction experiments. This work is based on experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. E.M. acknowledges financial support from the Fonds de Recherche du Quebec-Nature et Technologies. Approved Most recent IF: 39.737
  Call Number EMAT @ emat @c:irua:147502 Serial 4773
Permanent link to this record
 

 
Author Clima, S.; Belmonte, A.; Degraeve, R.; Fantini, A.; Goux, L.; Govoreanu, B.; Jurczak, M.; Ota, K.; Redolfi, A.; Kar, G.S.; Pourtois, G.
  Title Kinetic and thermodynamic heterogeneity : an intrinsic source of variability in Cu-based RRAM memories Type A1 Journal article
  Year 2017 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
  Volume (down) 16 Issue 4 Pages 1011-1016
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract <script type='text/javascript'>document.write(unpmarked('The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous and solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Place of publication unknown Editor
  Language Wos 000417598100004 Publication Date 2017-08-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.526 Times cited 2 Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.526
  Call Number UA @ lucian @ c:irua:148569 Serial 4883
Permanent link to this record
 

 
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K.
  Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
  Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume (down) 16 Issue 1 Pages 1700238
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000455413600004 Publication Date 2018-07-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access
  Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial 5146
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M.
  Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
  Year 2019 Publication Current opinion in electrochemistry Abbreviated Journal
  Volume (down) 16 Issue 16 Pages 57-65
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000485814400010 Publication Date 2019-04-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 4 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:159574 Serial 5498
Permanent link to this record
 

 
Author Elia, A.; De Wael, K.; Dowsett, M.; Adriaens, A.
  Title Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor Type A1 Journal article
  Year 2011 Publication Journal of solid state electrochemistry Abbreviated Journal J Solid State Electr
  Volume (down) 16 Issue 1 Pages 143-148
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper, we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper carboxylates onto the electrode. The modified electrodes have been characterised with infrared spectroscopy. In addition, the corrosion resistance of the film has been investigated using polarisation resistance and Tafel plot measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000298651700018 Publication Date 2011-01-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1432-8488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.316 Times cited 8 Open Access
  Notes ; Authors would like to acknowledge the Research Foundation-Flanders (FWO) for funding assistance (A. Elia is a FWO aspirant) and V. Vermeersch and S. Van Vlierberghe (Ghent University, Polymer Chemistry and Biomaterials Research Group) for the FTIR-ATR measurements. ; Approved Most recent IF: 2.316; 2011 IF: 2.131
  Call Number UA @ admin @ c:irua:89618 Serial 5588
Permanent link to this record
 

 
Author Nevens, F.; Dessein, J.; Meul, M.; Rogge, E.; Verbruggen, I.; Mulier, A.; Van Passel, S.; Lepoutre, J.; Hongenaert, M.
  Title 'On tomorrow's grounds' : Flemish agriculture in 2030: a case of participatory translation of sustainability principles into a vision for the future Type A1 Journal article
  Year 2008 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
  Volume (down) 16 Issue 10 Pages 1062-1070
  Keywords A1 Journal article; Economics
  Abstract In Flanders (Belgium) there is an obvious lack of clear long-term vision on sustainable development, for society as a whole as well as for the individual sectors of (economic) activity. In this paper we present the first results of a process of vision development for Flemish agriculture, called On tomorrow's grounds. The initiative, taken by Stedula (the Flemish Policy Research Centre for Sustainable Agriculture), shows that discovering core values, stating a concise mission, establishing guiding core principles and working with vivid descriptions of envisaged future systems seem indispensable elements to develop a vision that inspires and mobilizes people and that, eventually, stands a chance of being anchored in the sector's or organisation's culture. The principal method of working of the project was a multi-stakeholder process (MSP) focussed on dialogue. During five extensive stakeholder meetings, representatives of farmers, service industries, food distribution, education, government, research, consumers and NGO's participated in a constructive dialogue on values and mission, principles and two vivid descriptions of envisioned future farms. The concept of the project was welcomed and supported by the Flemish Minister-President and by the Belgian federal state secretary for sustainable development.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256245800004 Publication Date 2007-08-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.715 Times cited 13 Open Access
  Notes Approved Most recent IF: 5.715; 2008 IF: 1.362
  Call Number UA @ admin @ c:irua:136765 Serial 6232
Permanent link to this record
 

 
Author De Schepper, E.; Van Passel, S.; Lizin, S.; Achten, W.M.J.; Van Acker, K.
  Title Cost-efficient emission abatement of energy and transportation technologies : mitigation costs and policy impacts for Belgium Type A1 Journal article
  Year 2014 Publication Clean Technologies And Environmental Policy Abbreviated Journal Clean Technol Envir
  Volume (down) 16 Issue 6 Pages 1107-1118
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract In the light of global warming, this paper develops a framework to compare energy and transportation technologies in terms of cost-efficient GHG emission reduction. We conduct a simultaneous assessment of economic and environmental performances through life cycle costing and life cycle assessment. To calculate the GHG mitigation cost, we create reference systems within the base scenario. Further, we extend the concept of the mitigation cost, allowing (i) comparision of technologies given a limited investment resource, and (ii) evaluation of the direct impact of policy measures by means of the subsidized mitigation cost. The framework is illustrated with a case of solar photovoltaics (PV), grid powered battery electric vehicles (BEVs), and solar powered BEVs for a Belgian small and medium sized enterprise. The study's conclusions are that the mitigation cost of solar PV is high, even though this is a mature technology. The emerging mass produced BEVs on the other hand are found to have a large potential for cost-efficient GHG mitigation as indicated by their low cost of mitigation. Finally, based on the subsidized mitigation cost, we conclude that the current financial stimuli for all three investigated technologies are excessive when compared to the CO2 market value under the EU Emission Trading Scheme.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000339874900010 Publication Date 2014-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1618-954x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.331 Times cited 14 Open Access
  Notes ; ; Approved Most recent IF: 3.331; 2014 IF: 1.934
  Call Number UA @ admin @ c:irua:127543 Serial 6175
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X.
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal
  Volume (down) 16 Issue Pages Unsp 100392-8
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000539083500049 Publication Date 2020-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.3 Times cited 13 Open Access
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA
  Call Number UA @ admin @ c:irua:169752 Serial 6655
Permanent link to this record
 

 
Author Tao, Z.H.; Dong, H.M.; Milošević, M.V.; Peeters, F.M.; Van Duppen, B.
  Title Tailoring dirac plasmons via anisotropic dielectric environment by design Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl
  Volume (down) 16 Issue 5 Pages 054030
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Dirac plasmons in a two-dimensional (2D) crystal are strongly affected by the dielectric properties of the environment, due to interaction of their electric field lines with the surrounding medium. Using graphene as a 2D reservoir of free carriers, one can engineer a material configuration that provides an anisotropic environment to the plasmons. In this work, we discuss the physical properties of Dirac plasmons in graphene surrounded by an arbitrary anisotropic dielectric and exemplify how h-BN-based heterostructures can be designed to bear the required anisotropic characteristics. We calculate how dielec-tric anisotropy impacts the spatial propagation of the plasmons and find that an anisotropy-induced plasmon mode emerges, together with a damping pathway, that stem from the out-of-plane off-diagonal elements in the dielectric tensor. Furthermore, we find that one can create hyperbolic plasmons by inher-iting the dielectric hyperbolicity of the designed material environment. Strong control over plasmon propagation patterns can be realized in a similar manner. Finally, we show that in this way one can also control the polarization of the light-matter excitations that constitute the plasmon. Taken together, our results promote the design of the dielectric environment as an effective path to tailor the plasmonic response of graphene on the nanoscopic level.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000720372500002 Publication Date 2021-11-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.808 Times cited 2 Open Access Not_Open_Access
  Notes Approved Most recent IF: 4.808
  Call Number UA @ admin @ c:irua:184063 Serial 7028
Permanent link to this record
 

 
Author Chen, H.; Xu, J.; Wang, Y.; Wang, D.; Ferrer-Espada, R.; Wang, Y.; Zhou, J.; Pedrazo-Tardajos, A.; Yang, M.; Tan, J.-H.; Yang, X.; Zhang, L.; Sychugov, I.; Chen, S.; Bals, S.; Paulsson, J.; Yang, Z.
  Title Color-switchable nanosilicon fluorescent probes Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
  Volume (down) 16 Issue 9 Pages 15450-15459
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Fluorescent probes are vital to cell imaging by allowing specific parts of cells to be visualized and quantified. Color-switchable probes (CSPs), with tunable emission wavelength upon contact with specific targets, are particularly powerful because they not only eliminate the need to wash away all unbound probe but also allow for internal controls of probe concentrations, thereby facilitating quantification. Several such CSPs exist and have proven very useful, but not for all key cellular targets. Here we report a pioneering CSP for in situ cell imaging using aldehydefunctionalized silicon nanocrystals (SiNCs) that switch their intrinsic photoluminescence from red to blue quickly when interacting with amino acids in live cells. Though conventional probes often work better in cell-free extracts than in live cells, the SiNCs display the opposite behavior and function well and fast in universal cell lines at 37 ? while requiring much higher temperature in extracts. Furthermore, the SiNCs only disperse in cytoplasm not nucleus, and their fluorescence intensity correlated linearly with the concentration of fed amino acids. We believe these nanosilicon probes will be promising tools to visualize distribution of amino acids and potentially quantify amino acid related processes in live cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000861080700001 Publication Date 2022-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 17.1 Times cited 1 Open Access Not_Open_Access
  Notes Z.Y. and H.C. acknowledge the funding support from the National Natural Science Foundation of China (21905316, 22175201) , the Science and Technology Planning Project of Guangdong Province (2019A050510018) , the Pearl River Recruitment Program of Talent (2019QN01C108) , the EU Infrastructure Project EUSMI (Grant No. E190700310) , and Sun Yat-sen University. S.C. acknowledge the funding support from the National Natural Science Foundation of China (32171192) . D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant No. 894254 SuprAtom) . S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO) . J.Z. acknowledged the funding support from the China Scholarship Council (CSC) . L.Z and J.X. thank Huzhou Li-in Biotechnology Co., Ltd. for the instrumentational and financial support. J.X. and R.F.-E. appreciate fruitful discussion with Dr. Emanuele Leoncini and Dr. Noah Olsman. J.X. and R.F.-E. also thank Mr. Daniel Eaton and Mr. Carlos Sanchez for their help with microscope setups. Approved Most recent IF: 17.1
  Call Number UA @ admin @ c:irua:191574 Serial 7288
Permanent link to this record
 

 
Author Yao, Y.; Ugras, T.J.; Meyer, T.; Dykes, M.; Wang, D.; Arbe, A.; Bals, S.; Kahr, B.; Robinson, R.D.
  Title Extracting pure circular dichroism from hierarchically structured CdS magic cluster films Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
  Volume (down) 16 Issue 12 Pages 20457-20469
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Chiroptically active, hierarchically structured materials are difficult to accurately characterize due to linear anisotropic contributions (i.e., linear dichroism (LD) and linear birefringence (LB)) and parasitic ellipticities that produce artifactual circular dichroism (CD) signals, in addition to chiral analyte contributions ranging from molecular-scale clusters to micron-sized assemblies. Recently, we have shown that CdS magic-sized clusters (MSC) can self-assemble into ordered films that have a hierarchical structure spanning seven orders of length-scale. These films have a strong CD response, but the chiral origins are obfuscated by the hierarchical architecture and LDLB contributions. Here, we derive and demonstrate a method for extracting the “pure” CD signal (CD generated by structural dissymmetry) from hierarchical MSC films and identified the chiral origin. The theory behind the method is derived using Mueller matrix and Stokes vector conventions and verified experimentally before being applied to hierarchical MSC and nanoparticle films with varying macroscopic orderings. Each film's extracted “true CD” shares a bisignate profile aligned with the exciton peak, indicating the assemblies adopt a chiral arrangement and form an exciton coupled system. Interestingly, the linearly aligned MSC film possesses one of the highest g-factors (0.05) among semiconducting nanostructures reported. Additionally, we find that films with similar electronic transition dipole alignment can possess greatly different g-factors, indicating chirality change rather than anisotropy is the cause of the difference in the CD signal. The difference in g-factor is controllable via film evaporation geometry. This study provides a simple means to measure “true” CD and presents an example of experimentally understanding chiroptic interactions in hierarchical nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000888219600001 Publication Date 2022-11-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access
  Notes This work was supported in part by the National Science Foundation (NSF) under Award Nos. DMR-2003431 and CHE-2003586. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work is partly supported by Grant PID2021-123438NB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF vA way of making Europe”) and Grant IT1566-22 (Eusko Jaurlaritza). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon 2020 program (Grant 894254 SuprAtom). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. B.K. acknowledges NSF award DMR-2003968. We would like to thank Dr. Mark August Pfeifer for help with circular dichroism measurements. Additionally, we would like to thank Professor Luis M. Liz-Marzan for invaluable discussions on chirality. Approved Most recent IF: 17.1
  Call Number UA @ admin @ c:irua:192070 Serial 7305
Permanent link to this record
 

 
Author Parzyszek, S.; Tessarolo, J.; Pedrazo-Tardajos, A.; Ortuno, A.M.; Baginski, M.; Bals, S.; Clever, G.H.; Lewandowski, W.
  Title Tunable circularly polarized luminescence via chirality induction and energy transfer from organic films to semiconductor nanocrystals Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
  Volume (down) 16 Issue 11 Pages 18472-18482
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herei n , we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chira l i t y induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors g(lum) similar to 10(-2). The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semi-conductor quantum dots (QDs) into the LC matri x , which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to similar to 10(-2) and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000883943600001 Publication Date 2022-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 17.1 Times cited 10 Open Access OpenAccess
  Notes W.L., S.P., and M.B. acknowledge support from the National Science Center Poland under the OPUS Grant UMO-2019/35/B/ST5/04488. J.T. and G.H.C. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, Grant EXC 2033-390677874-RESOLV. W.L. acknowledges financial support from the European Commission under the Horizon 2020 Programme by Grant E210400529. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by Grant 731019 (EUSMI) and ERC Consolidator Grant 815128 (REALNANO). We thank Elie Benchimol for his help with the CPL measurements. We thank Damian Pociecha for his help in the determination of phase sequences of organic compounds. Approved Most recent IF: 17.1
  Call Number UA @ admin @ c:irua:192101 Serial 7345
Permanent link to this record
 

 
Author De Vis, K.; Jembrih-Simbürger, D.; Schalm, O.; Schreiner, M.; Caen, J.
  Title Einfluss verschiedener Silbersalze auf die Farbintensität von Silbergelb : analytische Untersuchungen Type A2 Journal article
  Year 2002 Publication Zeitschrift für Kunsttechnologie und Konservierung Abbreviated Journal
  Volume (down) 16 Issue 1 Pages 147-157
  Keywords A2 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0931-7198 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:107748 Serial 7855
Permanent link to this record
 

 
Author Deutsch, F.; Stranger, M.; Kaplinskii, A.E.; Samek, L.; Joos, P.; Van Grieken, R.
  Title On the impact of precipitation amount on the concentration of elements and ions in urban aerosol particles Type A3 Journal article
  Year 2003 Publication Atmospheric and oceanic optics Abbreviated Journal
  Volume (down) 16 Issue 10 Pages 850-855
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:43561 Serial 8330
Permanent link to this record
 

 
Author Deutsch, F.; Stranger, M.; Kaplinskii, A.E.; Samek, L.; Joos, P.; Van Grieken, R.
  Title O vlijanii kolitsjestva osadkov na kontsentratsioe elementov i ionov v tsjastitsach gorodskogo aerozolja Type A3 Journal article
  Year 2003 Publication Optika atmospheri i okeana Abbreviated Journal
  Volume (down) 16 Issue 10 Pages 927-932
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:43705 Serial 8738
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.; Sorée, B.; Hinkle, C.; Vandenberghe, W.G.
  Title Reduction of magnetic interaction due to clustering in doped transition-metal dichalcogenides : a case study of Mn-, V-, and Fe-doped WSe₂ Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
  Volume (down) 16 Issue 4 Pages 4991-4998
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001155511900001 Publication Date 2024-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record
  Impact Factor 9.5 Times cited Open Access
  Notes Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number UA @ admin @ c:irua:203830 Serial 9169
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
  Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume (down) 15 Issue 11 Pages 3702-3705
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000315165100002 Publication Date 2013-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 74 Open Access
  Notes Approved Most recent IF: 4.123; 2013 IF: 4.198
  Call Number UA @ lucian @ c:irua:107702 Serial 94
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.
  Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume (down) 15 Issue Pages 189-195
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000180368000029 Publication Date 2003-01-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 9 Open Access
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
  Call Number UA @ lucian @ c:irua:40348 Serial 123
Permanent link to this record
 

 
Author Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S.
  Title Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
  Volume (down) 15 Issue 15 Pages 6634-6642
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.
  Address EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000363003100052 Publication Date 2015-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 26 Open Access OpenAccess
  Notes This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
  Call Number c:irua:129423 c:irua:129423 Serial 3973
Permanent link to this record
 

 
Author Goris, B.; de Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, K.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Aert, S.; Bals, S.; Sijbers, J.; Van Tendeloo, G.
  Title Measuring lattice strain in three dimensions through electron microscopy Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
  Volume (down) 15 Issue 15 Pages 6996-7001
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000363003100108 Publication Date 2015-09-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 87 Open Access OpenAccess
  Notes Fwo; 335078 Colouratom; 267867 Plasmaquo; 312483 Esteem2; 262348 Esmi; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
  Call Number c:irua:127639 c:irua:127639 Serial 1965
Permanent link to this record
 

 
Author Neyts, E.; Tacq, M.; Bogaerts, A.
  Title Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study Type A1 Journal article
  Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume (down) 15 Issue 10 Pages 1663-1676
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000241224000026 Publication Date 2006-03-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.561 Times cited 18 Open Access
  Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
  Call Number UA @ lucian @ c:irua:59634 Serial 2819
Permanent link to this record
 

 
Author Villegas, C.E.P.; Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M.
  Title Sorting the modes contributing to guidance in strain-induced graphene waveguides Type A1 Journal article
  Year 2013 Publication New journal of physics Abbreviated Journal New J Phys
  Volume (down) 15 Issue Pages 023015-11
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We propose a simple way of probing the number of modes contributing to the channeling in graphene waveguides which are formed by a gauge potential produced by mechanical strain. The energy mode structure for both homogeneous and non-homogeneous strain regimes is carefully studied using the continuum description of the Dirac equation. We found that high strain values privilege negative (instead of positive) group velocities throughout the guidance, sorting the types of modes flowing through it. We also show how the effect of a substrate-induced gap competes against the strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000314868000002 Publication Date 2013-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 7 Open Access
  Notes ; This work was supported by FAPESP, CNPq and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.786; 2013 IF: 3.671
  Call Number UA @ lucian @ c:irua:107667 Serial 3056
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V.
  Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
  Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume (down) 15 Issue 46 Pages 4899-4905
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000233439300005 Publication Date 2005-10-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 8 Open Access
  Notes Iap V-1 Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:56069 Serial 3424
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: