|   | 
Details
   web
Records
Author Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A.
Title Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (up) 15 Issue 8 Pages 1800022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441895700004 Publication Date 2018-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L.
Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (up) 15 Issue 7 Pages 10775-10981
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000679406500006 Publication Date 2021-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 538 Open Access OpenAccess
Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:180553 Serial 6846
Permanent link to this record
 

 
Author Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z.
Title Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets Type A1 Journal article
Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (up) 15 Issue 11 Pages 17729-17737
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000747115200053 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 34 Open Access OpenAccess
Notes The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions. Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:186465 Serial 7059
Permanent link to this record
 

 
Author Craig, T.M.; Kadu, A.A.; Batenburg, K.J.; Bals, S.
Title Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (up) 15 Issue 11 Pages 5391-5402
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal–organic framework complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000937908900001 Publication Date 2023-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 1 Open Access OpenAccess
Notes H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 860942 ; Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number EMAT @ emat @c:irua:195235 Serial 7260
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E.
Title Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal
Volume (up) 15 Issue 5 Pages 7294-7307
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000931729400001 Publication Date 2023-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access Not_Open_Access
Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:195375 Serial 7293
Permanent link to this record
 

 
Author Smeyers, R.; Milošević, M.V.; Covaci, L.
Title Strong gate-tunability of flat bands in bilayer graphene due to moiré encapsulation between hBN monolayers Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (up) 15 Issue 9 Pages 4561-4569
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moire pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moire stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moire-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moire mini-band in width against the moire-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000933052600001 Publication Date 2023-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:195249 Serial 7340
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J.
Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal
Volume (up) 15 Issue 2 Pages 3274-3286
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000912997300001 Publication Date 2023-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access OpenAccess
Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:194317 Serial 7348
Permanent link to this record
 

 
Author Scolfaro, D.; Finamor, M.; Trinchao, L.O.; Rosa, B.L.T.; Chaves, A.; Santos, P., V.; Iikawa, F.; Couto, O.D.D., Jr.
Title Acoustically driven stark effect in transition metal dichalcogenide monolayers Type A1 Journal article
Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (up) 15 Issue 9 Pages 15371-15380
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000703553600129 Publication Date 2021-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.942
Call Number UA @ admin @ c:irua:182545 Serial 7415
Permanent link to this record
 

 
Author Kuczumow, A.; Schmeling, M.; Van Grieken, R.
Title Critical assessment and proposal for reconstruction of a grazing emission X-ray fluorescence instrument Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume (up) 15 Issue Pages 535-542
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000086871600008 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:27852 Serial 7741
Permanent link to this record
 

 
Author Labrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.
Title Determination of barium, lanthanum, cerium and neodymium in lateritic materials by various energy-dispersive X-ray fluorescence techniques and neutron activation analysis Type A1 Journal article
Year 1986 Publication X-ray spectrometry Abbreviated Journal
Volume (up) 15 Issue 1 Pages 13-18
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A comparison of four methods for the determination of barium, lanthanum, cerium and neodymium in lateritic materials from Brazil is presented. Three of the methods were based on x-ray fluorescence (XRF) spectroscopy: two by radioisotope excitation (Co-57 and Am-241) and one by secondary target XRF (a molybdenum target with a tungsten anode). The other method was based on neutron activation analysis employing both a Ge(Li) coaxial detector and a high-purity germanium detector. The results from these four methods were similar for lanthanum, cerium and neodymium, but for barium at low concentrations (<500 ppm) the neutron activation and the secondary target XRF methods were not suitable. Data on the precision and accuracy of these methods using a series of standard reference rocks are given. The advantages and limitations of each of these methods with respect to the analysis of lateritic materials are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1986AYN6000003 Publication Date 2005-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116487 Serial 7774
Permanent link to this record
 

 
Author Kuczumow, A.; Claes, M.; Schmeling, M.; Van Grieken, R.; de Gendt, S.
Title Quantification problems in light element determination by grazing emission X-ray fluorescence Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume (up) 15 Issue Pages 415-421
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000086323700017 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:27592 Serial 8437
Permanent link to this record
 

 
Author Szalóki, I.; Braun, M.; Van Grieken, R.
Title Quantitative characterisation of the leaching of lead and other elements from glazed surfaces of historical ceramics Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume (up) 15 Issue Pages 843-850
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000088267700006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:28426 Serial 8440
Permanent link to this record
 

 
Author van Dyck, K.; Robberecht, H.; van Cauwenbergh, R.; Deelstra, H.; Arnaud, J.; Willemyns, L.; Benijts, F.; Centeno, J.A.; Taylor, H.; Soares, M.E.; Bastos, M.L.; Ferreira, M.A.; d'Haese, P.C.; Lamberts, L.V.; Hoenig, M.; Knapp, G.; Lugowski, S.J.; Moens, L.; Riondato, J.; Van Grieken, R.; Claes, M.; Verheyen, R.; Clement, L.; Uytterhoeven, M.
Title Spectrometric determination of silicon in food and biological samples: an interlaboratory trial Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume (up) 15 Issue 6 Pages 735-741
Keywords A1 Journal article; Behavioural Ecology & Ecophysiology; Pathophysiology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Accuracy and precision of silicon determination in biological matrices (serum, urine, water, beer and spinach) by spectrometric techniques (when necessary after acid destruction) were assessed by means of a collaborative interlaboratory trial. The trial was set up in accordance with ISO 5725-2 (1994). The relative overall repeatability standard deviation was acceptable. It varied between 4% for spinach powder (mean content: 176 mg kg(-1)) and 11% for serum (mean content: 5.33 mg L-1). On the other hand, the relative overall between-laboratory standard deviation was found to vary from a satisfactorily 15% for spinach after destruction (mean content: 3.32 mg L-1) to an unacceptable 107% for spinach powder (mean content: 176 mg kg(-1)). The overall conclusion of the trial was that silicon determination in biological matrices can properly be performed by spectrometric techniques. However, when sample pretreatment (i.e., acid destruction) is needed prior to silicon determination problems still remain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000087419300025 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:27841 Serial 8574
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (up) 15 Issue 19 Pages 8772-8780
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000976615200001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:196722 Serial 8873
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Milošević, M.V.
Title Superconductivity in functionalized niobium-carbide MXenes Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal
Volume (up) 15 Issue 19 Pages 8792-8799
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We detail the effects of Cl and S functionalization on the superconducting properties of layered (bulk) and monolayer niobium carbide (Nb2C) MXene crystals, based on first-principles calculations combined with Eliashberg theory. For bulk layered Nb2CCl2, the calculated superconducting transition temperature (T-c) is in very good agreement with the recently measured value of 6 K. We show that T-c is enhanced to 10 K for monolayer Nb2CCl2, due to an increase in the density of states at the Fermi level, and the corresponding electron-phonon coupling. We further demonstrate feasible gate- and strain-induced enhancements of T-c for both bulk-layered and monolayer Nb2CCl2 crystals, resulting in T-c values of around 38 K. In the S-functionalized Nb2CCl2 crystals, our calculations reveal the importance of phonon softening in understanding their superconducting properties. Finally, we predict that Nb3C2S2 in bulk-layered and monolayer forms is also superconducting, with a T-c of around 28 K. Considering that Nb2C is not superconducting in pristine form, our findings promote functionalization as a pathway towards robust superconductivity in MXenes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000976973900001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:196711 Serial 8938
Permanent link to this record
 

 
Author Verbruggen, L.; Verheggen, L.; Vanhoutte, G.; Loly, C.; Lybaert, W.; Borbath, I.; Vergauwe, P.; Hendrickx, K.; Debeuckelaere, C.; de Haar-Holleman, A.; Van Laethem, J.-L.; Peeters, M.
Title A real-world analysis on the efficacy and tolerability of liposomal irinotecan plus 5-fluorouracil and folinic acid in metastatic pancreatic ductal adenocarcinoma in Belgium Type A1 Journal article
Year 2023 Publication Therapeutic advances in medical oncology Abbreviated Journal
Volume (up) 15 Issue Pages 1-13
Keywords A1 Journal article; Center for Oncological Research (CORE)
Abstract Background: Currently, nanoliposomal irinotecan (nal-IRI) + 5-fluorouracil/folinic acid (5-FU/ LV) is the only approved second-line treatment for patients suffering from metastatic pancreatic ductal adenocarcinoma (mPDAC). However, also other chemotherapeutic regimens are used in this setting and due to the lack of clear real-world data on the efficacy of the different regimens, there is no consensus on the optimal treatment sequence for mPDAC patients. Objectives: To provide information on the safe and efficacious use of nal-IRI + 5-FU/LV in clinical practice in Belgium, which is needed for healthcare professionals to estimate the risk-benefit ratio of the intervention. Methods: Medical data of adult patients with mPDAC who were treated with nal-IRI + 5-FU/ LV in one of the participating Belgian hospitals were retrospectively collected. Kaplan-Meier analysis was performed to obtain survival curves to estimate the median overall survival (OS) and progression-free survival (PFS). All other results were presented descriptively. Results: A total of 56 patients [median age at diagnosis: 69 years (range 43 years), 57.1% male] were included. Patients received a median of 5 (range 49 cycles) nal-IRI + 5-FU/LV cycles, extended over 10 weeks (range 130.8 weeks). The median start dose for nal-IRI was 70 mg/ m(2) (range 49.24 mg/m(2)) and chemotherapy dose reduction and delay occurred in, respectively, 42.8% and 37.5% of the patients. The median OS was 6.8 months (95% CI: 5.6-8.4 months) with a 6-month survival rate of 57.4% and a 1-year survival rate of 27.8% in the overall study population. The median OS for patients treated with nal-IRI as second-line therapy or as laterline treatment was, respectively, 6.8 months (95% CI: 5.9-7.0 months) and 5.6 months (95% CI: 4.2-no upper limit). In the overall study population, a median PFS of 3.1 months (95% CI: 2.4-4.6 months) and a disease control rate of 48.3%, comprising 30.4% stable disease, 16.1% partial and 1.8% complete response, was observed. The median PFS for patients treated with nal-IRI as second-line therapy was 3.9 months (95% CI: 2.8-4.8 months) while this was 2.4 months (95% CI: 1.9-9.1 months) for those that received nal-IRI in a later-line treatment. In terms of safety, gastrointestinal problems occurred most (64.3% of the patients) and from all reported treatment emergent adverse events, 39.2% were grade 3 or 4. Conclusion: Nal-IRI + 5-FU/LV is a valuable, effective, and safe sequential treatment option following gemcitabine-based therapy in patients with mPDAC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001051446400001 Publication Date 2023-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-8340; 1758-8359 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.9 Times cited Open Access
Notes Approved Most recent IF: 4.9; 2023 IF: 6.294
Call Number UA @ admin @ c:irua:199296 Serial 9183
Permanent link to this record
 

 
Author Smets, B.; Boschker, H.T.S.; Wetherington, M.T.; Lelong, G.; Hidalgo-Martinez, S.; Polerecky, L.; Nuyts, G.; De Wael, K.; Meysman, F.J.R.
Title Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria Type A1 Journal article
Year 2024 Publication Frontiers in microbiology Abbreviated Journal
Volume (up) 15 Issue Pages 1208033-16
Keywords A1 Journal article
Abstract Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405–1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001189511900001 Publication Date 2024-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-302x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205115 Serial 9214
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.;
Title Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
Year 2015 Publication Nano energy Abbreviated Journal Nano Energy
Volume (up) 16 Issue 16 Pages 256-267
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364579300027 Publication Date 2015-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 27 Open Access
Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325
Call Number c:irua:127688 Serial 296
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (up) 16 Issue 31 Pages 16771-16779
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000340075700048 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M.
Title Dynamics of a finite classical two-dimensional system Type A1 Journal article
Year 1994 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume (up) 16 Issue 3 Pages 243-247
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spectral properties of a classical two-dimensional (2D) cluster of charged particles which are confined by a quadratic potential are calculated. Using the method of Newton optimization we obtain the ground state and the metastable states. For a given configuration the eigenvectors and eigenfrequencies for the normal modes are obtained using the Householder diagonalization technique for the dynamical matrix whose elements are the second derivative of the potential energy. For small clusters the lowest excitation corresponds to an intershell rotation. Magic numbers are associated to clusters which are most stable against intershell rotation. For large clusters the lowest excitation is a vortex/anti-vortex pair.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1994QE75400007 Publication Date 2009-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.097 Times cited 4 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:99951 Serial 772
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.
Title Exciton states and oscillator strength in two vertically coupled InP/InGaP quantum discs Type A1 Journal article
Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume (up) 16 Issue 47 Pages 8633-8652
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum mechanical coupling and strain in two vertically arranged InP/InGaP quantum dots is studied as a function of the size of the dots and the spacer thickness. The strain distribution is determined by the continuum mechanical model, while the single-band effective-mass equation and the multiband k (.) p theory are employed to compute the conduction and valence band energy levels, respectively. The exciton states are obtained from an exact diagonalization approach, and we also compute the oscillator strength for recombination. We found that the light holes are confined by strain to the spacer, which is the reason that the hole states exhibit coupling at much larger distances as compared with the electrons. At small d, the doublet structure of the hole energy levels arises as a consequence of the relocation of the light hole from the matrix to the regions located-outside the stack, close to the dot-matrix interface. When d varies, the exciton ground state exhibits numerous anticrossings with other states, which are related to the changing spatial localization of the hole as a function of d. The oscillator strength of the exciton recombination is strongly reduced in a certain range of spacer thicknesses, which effectively turns a bright exciton state into a dark one. This effect is associated with anticrossings between exciton energy levels.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000225796800016 Publication Date 2004-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved Most recent IF: 2.649; 2004 IF: 2.049
Call Number UA @ lucian @ c:irua:99315 Serial 1116
Permanent link to this record
 

 
Author Krstajic, P.M.; Ivanov, V.A.; Peeters, F.M.; Fleurov, V.; Kikoin, K.
Title Ferromagnetism in Mn-doped GaAs : the kinematic exchange Type A1 Journal article
Year 2003 Publication Journal of superconductivity T2 – PASPS Conference 2002, JUL, 2002, WURZBURG, GERMANY Abbreviated Journal J Supercond
Volume (up) 16 Issue 1 Pages 111-113
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We developed a microscopic model in order to describe the onset of ferromagnetism (FM) in GaAs:Mn. The proposed kinematic mechanism bears resemblances with the Zener exchange. The calculated Curie temperature for GaAs: Mn is in good agreement with available experimental data of the Curie temperature as a function of the manganese concentration.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000182060400027 Publication Date 2003-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0896-1107; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103314 Serial 1183
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers Type A1 Journal article
Year 2004 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume (up) 16 Issue 46 Pages 8275-8283
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The temperature-dependent giant magnetoresistance effect is investigated in a magnetically modulated two-dimensional electron gas, which can be realized by depositing two parallel ferromagnets on the top and bottom of a heterostructure. The effective potential for electrons arising for parallel magnetization allows the electrons to resonantly tunnel through the magnetic barriers, while this is excluded in the anti-parallel situation. Such a discrepancy results in a giant magnetoresistance ratio (MRR), which can be up to 10(31)%. The MRR shows a strong dependence on temperature, but our study indicates that for realistic parameters for a GaAs heterostructure the effect can be as high as 10(4)% at 4 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000225706000017 Publication Date 2004-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 69 Open Access
Notes Approved Most recent IF: 2.649; 2004 IF: 2.049
Call Number UA @ lucian @ c:irua:103718 Serial 1338
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation Type A1 Journal article
Year 2015 Publication Acta biomaterialia Abbreviated Journal Acta Biomater
Volume (up) 16 Issue 16 Pages 215-222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.10.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000351978600021 Publication Date 2015-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 54 Open Access
Notes Fwo G043110n Approved Most recent IF: 6.319; 2015 IF: 6.025
Call Number c:irua:124421 Serial 1473
Permanent link to this record
 

 
Author Bogaerts, A.; Naylor, J.; Hatcher, M.; Jones, W.J.; Mason, R.
Title Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: modeling and comparison with experiment Type A1 Journal article
Year 1998 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume (up) 16 Issue 4 Pages 2400-2410
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000074852700061 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 12 Open Access
Notes Approved Most recent IF: 1.374; 1998 IF: 1.612
Call Number UA @ lucian @ c:irua:24124 Serial 1634
Permanent link to this record
 

 
Author Saeed, A.; Khan, A.W.; Shafiq, M.; Jan, F.; Abrar, M.; Zaka-ul-Islam, M.; Zakaullah, M.
Title Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy Type A1 Journal article
Year 2014 Publication Plasma science & technology Abbreviated Journal Plasma Sci Technol
Volume (up) 16 Issue 4 Pages 324-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA.cm(-2) to 4 mA.cm(-2). The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N-2]) generation. It is observed that in an N-2-H-2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H-2 in the mixture at 3 mbar pressure and current density of 4 mA.cm(-2).
Address
Corporate Author Thesis
Publisher Institute of Plasma Physics, the Chinese Academy of Sciences Place of Publication Beijing Editor
Language Wos 000335909600005 Publication Date 2014-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1009-0630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.83 Times cited 5 Open Access
Notes Approved Most recent IF: 0.83; 2014 IF: 0.579
Call Number UA @ lucian @ c:irua:117686 Serial 1728
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron
Volume (up) 16 Issue 16 Pages 227-233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000345649500029 Publication Date 2014-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.399 Times cited 24 Open Access OpenAccess
Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827
Call Number c:irua:122169 Serial 2267
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B.
Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (up) 16 Issue Pages 1715-1724
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000221345000019 Publication Date 2004-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:47318 Serial 2381
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (up) 16 Issue 6 Pages 2588-2596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000329926700040 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 47 Open Access
Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:114829 Serial 2525
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Pardo, J.A.; Santiso, J.
Title Structure and microstructure of epitaxial Sr4Fe6O13-\delta films on SrTiO3 Type A1 Journal article
Year 2004 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume (up) 16 Issue Pages 2578-2584
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure and the microstructure of epitaxial Sr4Fe6O13+/-delta thin films grown on a single-crystal SrTiO3 substrate by PLD have been investigated. A combination of electron diffraction and high-resolution microscopy allows us to refine the structure and to identify an incommensurate modulation in the Sr4Fe6O13+/-delta films. The incommensurate structure (q = alphaa(m)* approximate to 0.39alpha(m)*, superspace group Xmmm(alpha00)0s0) can be interpreted as an oxygen-deficient modification in the Fe2O2.5 double layers. Moreover, it is shown that the experimentally determined a component of the modulation can be used consistently to estimate the local oxygen content in the Sr4Fe6O13+/-delta films. The compound composition can therefore be described as Sr4Fe6O12+2alpha and the value alpha = 0.39 corresponds to a Sr4Fe6O12.78 composition. The misfit stress along the Sr4Fe6O13+/-delta/SrTiO3 interface is accommodated via both elastic deformation and inelastic mechanisms (misfit dislocations and 90degrees rotation twins). The present results also suggest the existence of SrFeO3 perovskite in the Sr4Fe6O13+/-delta films.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000222252300011 Publication Date 2004-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:54770 Serial 3286
Permanent link to this record