|   | 
Details
   web
Records
Author Wu, M.F.; Zhou, S.; Yao, S.; Zhao, Q.; Vantomme, A.; van Daele, B.; Piscopiello, E.; Van Tendeloo, G.; Tong, Y.Z.; Yang, Z.J.; Yu, T.J.; Zhang, G.Y.
Title High precision determination of the elastic strain of InGaN/GaN multiple quantum wells Type A1 Journal article
Year 2004 Publication Journal of vacuum science and technology: B: microelectronics and nanometer structures Abbreviated Journal
Volume (up) 22 Issue 3 Pages 920-924
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000222481400010 Publication Date 2004-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 15 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54863 Serial 1437
Permanent link to this record
 

 
Author Depla, D.; Chen, Z.Y.; Bogaerts, A.; Ignatova, V.; de Gryse, R.; Gijbels, R.
Title Modeling of the target surface modification by reactive ion implantation during magnetron sputtering Type A1 Journal article
Year 2004 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume (up) 22 Issue 4 Pages 1524-1529
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000223322000075 Publication Date 2004-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 13 Open Access
Notes Approved Most recent IF: 1.374; 2004 IF: 1.557
Call Number UA @ lucian @ c:irua:47331 Serial 2137
Permanent link to this record
 

 
Author De Baere, K.; Verstraelen, H.; Willemen, R.; Smet, J.-P.; Tchuindjang, J.T.; Lecomte-Beckers, J.; Lenaerts, S.; Meskens, R.; Jung, H.G.; Potters, G.
Title Assessment of corrosion resistance, material properties, and weldability of alloyed steel for ballast tanks Type A1 Journal article
Year 2017 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume (up) 22 Issue 1 Pages 176-199
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Ballast tanks are of great importance in the lifetime of modern merchant ships. Making a ballast tank less susceptible to corrosion can, therefore, prolong the useful life of a ship and, thereby, lower its operational cost. An option to reinforce a ballast tank is to construct it out of a corrosion-resistant steel type. Such steel was recently produced by POSCO Ltd., South Korea. After 6 months of permanent immersion, the average corrosion rate of A and AH steel (31 samples) was 535 g m(-2) year(-1), while the Korean CRS was corroding with 378 g m(-2) year(-1). This entails a gain of 29 %. Follow-up measurements after 10, 20, and 24 months confirmed this. The results after 6 months exposure to alternating wet/dry conditions are even more explicit. Furthermore, the physical and metallurgical properties of this steel show a density of 7.646 t/m(3), the elasticity modulus 209.3 GPa, the tensile strength 572 MPa, and the hardness 169HV10. Microscopically, the metal consists of equiaxed and recrystallized grains (ferrite and pearlite), with an average size of between 20 and 30 A mu m (ASTM E 112-12 grain size number between 7 and 8) with a few elongated pearlitic grains. The structure is banded ferrite/pearlite. On the basis of a series of energy dispersive X-ray spectrometer measurements the lower corrosion rate of the steel can be attributed to the interplay of Al, Cr, their oxides, and the corroding steel. In addition, the role of each element in the formation of oxide layers and the mechanisms contributing to the corrosion resistance are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395006400015 Publication Date 2016-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 3 Open Access
Notes ; This paper is published with the explicit permission of POSCO Ltd., original source of the corrosion resistant steel. Due to the creativity of the POSCO engineers and scientists, we could have our challenge, presented in this manuscript. The authors wish to thank the BOF funding received from the University of Antwerp and the Maritime Academy. We also wish to express our gratitude towards to the American Bureau of Shipping for their assistance in procuring the CRS plates, their moral and financial support, as well as to OCAS (Arcelor Mittal, Zelzate, Belgium) for their assistance in a number of measurements. ; Approved Most recent IF: 0.838
Call Number UA @ admin @ c:irua:142509 Serial 5928
Permanent link to this record
 

 
Author Moropoulou, A.; Bisbikou, K.; Van Grieken, R.; Torfs, K.; Polikreti, K.
Title Correlation between aerosols, deposits, and weathering crusts on ancient marbles Type A1 Journal article
Year 2001 Publication Environmental technology Abbreviated Journal
Volume (up) 22 Issue Pages 607-618
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000169968300001 Publication Date 2008-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:36081 Serial 7734
Permanent link to this record
 

 
Author Ray, S.; Kolen'ko, Y.V.; Kovnir, K.A.; Lebedev, O.I.; Turner, S.; Chakraborty, T.; Erni, R.; Watanabe, T.; Van Tendeloo, G.; Yoshimura, M.; Itoh, M.
Title Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 23 Issue 2 Pages 025702,1-025702,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (\mathrm {OH}\mathrm {(O)}
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000298409000011 Publication Date 2011-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:93636 Serial 614
Permanent link to this record
 

 
Author Schulze, A.; Hantschel, T.; Dathe, A.; Eyben, P.; Ke, X.; Vandervorst, W.
Title Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 23 Issue 30 Pages 305707
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000306333500029 Publication Date 2012-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 29 Open Access
Notes Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:100750 Serial 895
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A.
Title Reaction pathways of biomedically active species in an Ar plasma jet Type A1 Journal article
Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 23 Issue 3 Pages 035015-35027
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we analyse the gas phase production and loss pathways for several biomedically active species, i.e. N2(A), O, O3, O2(a), N, H, HO2, OH, NO, NO2, N2O5, H2O2, HNO2 and HNO3, in an argon plasma jet flowing into an open humid air atmosphere. For this purpose, we employ a zero-dimensional reaction kinetics model to mimic the typical experimental conditions by fitting several parameters to experimentally measured values. These include ambient air diffusion, the gas temperature profile and power deposition along the jet effluent. We focus in detail on how the pathways of the biomedically active species change as a function of the position in the effluent, i.e. inside the discharge device, active plasma jet effluent and afterglow region far from the nozzle. Moreover, we demonstrate how the reaction kinetics and species production are affected by different ambient air humidities, total deposited power into the plasma and gas temperature along the jet. It is shown that the dominant pathways can drastically change as a function of the distance from the nozzle exit or experimental conditions.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000337891900017 Publication Date 2014-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117075 Serial 2820
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 23 Issue 4 Pages 045004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000345761500014 Publication Date 2014-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 170 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117398 Serial 3108
Permanent link to this record
 

 
Author Tan, H.; Lebedev, O.I.; McLaughlin, A.C.; Van Tendeloo, G.
Title The superstructure and superconductivity of Ru1222 based RuSr2Gd2-x-yYyCexCu2O10-\delta compounds Type A1 Journal article
Year 2010 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 23 Issue 11 Pages 115013-115013,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract For the first time, the local structure and physical properties of Ru1222 based compounds (RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta) and RuSr(2)Gd(1.8-x)Y(0.2)CexCu(2)O(10) (x = 0.90-0.55)) have been investigated and analyzed together on the very same compounds. The Ru1222 superstructure was confirmed by TEM at a local scale and was suggested to have an orthorhombic symmetry with space group Aba2 and lattice parameters a(s) similar or equal to root 2a, b(s) similar or equal to root 2a and c(s) = c. This new Ru1222 superstructure distortion from tetragonal symmetry is proposed to have a positive correlation with the superconductivity variation of these compounds. The more the distortion towards orthorhombic symmetry, the higher the critical superconducting temperature these compounds can achieve. The T(c)(0) of RuSr(2)Gd(1.8-x)Y(0.2)Ce(x)Cu(2)O(10-delta) (x = 0.85-0.55) increases monotonically from 4 to 16 K when x decreases from 0.85 to 0.70, then RuSr(2)Gd(2)Cu(2)O(8) defects emerge and the T(c) decreases with decreasing x. Ru1212 defects are observed to intergrow epitaxially with the Ru1222 structure as lamellas along the c-axis in RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta). Although Ru1212 is a superconductor, the intergrowth severely restrains its superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000284308000013 Publication Date 2010-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 1 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.878; 2010 IF: 2.402
Call Number UA @ lucian @ c:irua:95553 Serial 3385
Permanent link to this record
 

 
Author Kolaitis, L.N.; Bruynseels, F.J.; Van Grieken, R.E.; Andreae, M.O.
Title Determination of methanesulfonic acid and non-sea-salt sulfate in single marine aerosol particles Type A1 Journal article
Year 1989 Publication Environmental science and technology Abbreviated Journal
Volume (up) 23 Issue 2 Pages 236-240
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1989T024900023 Publication Date 2005-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116813 Serial 7783
Permanent link to this record
 

 
Author Vleugels, G.J.; Van Grieken, R.E.
Title Weathering of treated and untreated limestones in atmospheric exposures Type A3 Journal article
Year 1991 Publication Journal of preservation technology Abbreviated Journal
Volume (up) 23 Issue Pages 48-51
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:4320 Serial 8755
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title A 2D model for a gliding arc discharge Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 24 Issue 24 Pages 015025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200026 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 24 Issue 6 Pages 065019-065019,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000290472900021 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 31 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G.
Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 24 Issue 24 Pages 025004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000356816200008 Publication Date 2015-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:123534 Serial 704
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 24 Issue 24 Pages 015024
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200025 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 100 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author Zelaya, E.; Esquivel, M.R.; Schryvers, D.
Title Evolution of the phase stability of NiAl under low energy ball milling Type A1 Journal article
Year 2013 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume (up) 24 Issue 6 Pages 1063-1069
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Low energy mechanical alloying of Ni35 at.%Al and Ni40 at.%Al material was performed and the resulting structures were investigated by XRD and TEM. The final intermetallics observed consist of two phases, NiAl(B2) and Ni3Al while 7R and 3R martensite was observed in post-annealed samples. Different integrated milling times were associated to the intermetallic consolidation and initial blend dissociation.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000339175000024 Publication Date 2013-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Fwo Approved Most recent IF: 2.659; 2013 IF: 1.642
Call Number UA @ lucian @ c:irua:107345 Serial 1102
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M.
Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 24 Issue 2 Pages 024014-024014,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900015 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 28 Open Access
Notes ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88732 Serial 1399
Permanent link to this record
 

 
Author Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Kukushkina, Y.A.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G.
Title Monodisperse spherical mesoporous silica particles : fast synthesis procedure and fabrication of photonic-crystal films Type A1 Journal article
Year 2013 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 24 Issue 15 Pages 155601-155611
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are similar to 15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 +/- 0.15 and 2.3 +/- 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol. Online supplementary data available from stacks.iop.org/Nano/24/155601/mmedia
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000316988700009 Publication Date 2013-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 49 Open Access
Notes Approved Most recent IF: 3.44; 2013 IF: 3.672
Call Number UA @ lucian @ c:irua:108462 Serial 2191
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Chaves, A.; Farias, G.A.
Title Klein tunneling in single and multiple barriers in graphene Type A1 Journal article
Year 2010 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume (up) 25 Issue 3 Pages 033002,1-033002,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We review the transmission properties of carriers interacting with potential barriers in graphene. The tunneling of electrons and holes in quantum structures in graphene is found to display features that are in marked contrast with those of other systems. In particular, the interaction between the carriers with electrostatic potential barriers can be related to the propagation of electromagnetic waves in media with negative refraction indices, also known as metamaterials. This behavior becomes evident as one calculates the time evolution of wavepackets propagating across the barrier interface. In addition, we discuss the effect of trigonal warping on the tunneling through potential barriers.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000274318300004 Publication Date 2010-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242;1361-6641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.305 Times cited 83 Open Access
Notes ; We want to acknowledge our collaborators in this work: P Vasilopoulos and M Barbier. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.305; 2010 IF: 1.333
Call Number UA @ lucian @ c:irua:80961 Serial 1764
Permanent link to this record
 

 
Author Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J.
Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume (up) 25 Issue 4 Pages 1254-1261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000341871700015 Publication Date 2014-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Approved Most recent IF: 2.659; 2014 IF: 2.638
Call Number UA @ lucian @ c:irua:119896 Serial 1977
Permanent link to this record
 

 
Author Croitoru, M.D.; Vagov, A.; Shanenko, A.A.; Axt, V.M.
Title The Cooper problem in nanoscale : enhancement of the coupling due to confinement Type A1 Journal article
Year 2012 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 25 Issue 12 Pages 124001-124005
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1956 Cooper demonstrated (1956 Phys. Rev. 104 1189) that, no matter how weak the attraction is, two electrons in three-dimensional (3D) space just above the Fermi sea could be bound. In this work we investigate the influence of confinement on the binding energy of a Cooper pair. We show that confinement-induced modification of the Fermi sea results in a significant increase of the binding energy, when the bottom of an energy subband is very close to the Fermi surface.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000311418100004 Publication Date 2012-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 9 Open Access
Notes ; MDC acknowledges support by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.878; 2012 IF: 2.758
Call Number UA @ lucian @ c:irua:105121 Serial 3573
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A.
Title Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 015002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800009 Publication Date 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 50 Open Access
Notes The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. Approved Most recent IF: 3.302
Call Number c:irua:129802 Serial 3982
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 015023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800030 Publication Date 2016-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 25 Open Access
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302
Call Number c:irua:130790 Serial 4006
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Bogaerts, A.; Reniers, F.
Title The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 025013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime,

their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher

frequency is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372337900015 Publication Date 2016-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 40 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. N Britun is a postdoctoral researcher of the F.R.S.-FNRS, Belgium. Approved Most recent IF: 3.302
Call Number c:irua:131904 Serial 4021
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Bogaerts, A.
Title A 3D model of a reverse vortex flow gliding arc reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 035014
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376557400022 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 20 Open Access
Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma–Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO), and it was also funded by the Fund for Scientific Research Flanders (FWO). Grant number: 11U5316N. Approved Most recent IF: 3.302
Call Number c:irua:132888 c:irua:132888 Serial 4063
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.
Title How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 045016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at

atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the

electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200030 Publication Date 2016-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 24 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134396 Serial 4100
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 045022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200036 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 33 Open Access
Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number c:irua:134397 Serial 4101
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403945500005 Publication Date 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134841 Serial 4107
Permanent link to this record