|   | 
Details
   web
Records
Author Vasilakou, K.; Nimmegeers, P.; Billen, P.; Van Passel, S.
Title Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production Type A1 Journal article
Year 2023 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume (up) 187 Issue Pages 113743-16
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Second-generation biofuels, starting from lignocellulosic biomass, are considered as a renewable alternative for fossil fuels with lower environmental impact and potentially higher supply and energy security. The economic and environmental performance of second-generation bioethanol production from corn stover in the European Union (EU) is studied, starting in Belgium as base case. A comparative environmental techno-economic assessment has been conducted, with process simulations in Aspen Plus and corn stover availability data in thirteen EU countries to calculate minimum ethanol selling prices (MESP) and Greenhouse gas emissions (GHGe). In this analysis, the emphasis is on the comparison of different pretreatment technologies, namely (i) dilute acid, (ii) alkaline, (iii) steam explosion and (iv) liquid hot water. Dilute acid showed the best economic and environmental performance for the base case scenario. Within the EU, Hungary and Romania presented the lowest MESP for the steam explosion model at 0.39 and 0.43 EUR/L respectively. Poland showed the lowest GHGe, at 0.46 kg CO2eq/L for the alkaline model, mainly due to the avoided product allocation on electricity and its high carbon intensity in the electricity generation sector. The second lowest GHGe were obtained in France for the dilute acid model and are attributed to its low agricultural emissions intensity. This study identifies a location-dependence of the economic and environmental performance of pretreatment technologies, which can be extrapolated from the EU to other large regions around the world and should be taken into consideration by decision-makers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082526000001 Publication Date 2023-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.9 Times cited Open Access
Notes Approved Most recent IF: 15.9; 2023 IF: 8.05
Call Number UA @ admin @ c:irua:198804 Serial 9205
Permanent link to this record
 

 
Author Borms, L.; Brusselaers, J.; Vrancken, K.C.M.; Deckmyn, S.; Marynissen, P.
Title Toward resilient organizations after COVID-19 : an analysis of circular and less circular companies Type A1 Journal article
Year 2023 Publication Resources, conservation and recycling Abbreviated Journal
Volume (up) 188 Issue Pages 106681-15
Keywords A1 Journal article; Economics; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
Abstract The COVID-19 pandemic had large repercussions for our economy and organizations. Improved resilience can give organizations the ability to withstand crises and build back better and faster. This article assesses resilience of organizations and sole proprietorships in the context of the COVID-19 pandemic with eight circular strategies as explanatory variables. Furthermore, these eight circular strategies are also used to assess the organizations' and sole proprietorships' resilience outside of the COVID-19 pandemic. This analysis is conducted to explain how circular strategies can help companies and sole proprietorships maintain stability. The analysis was performed by means of a survey conducted between May and June 2020 in Flanders (Belgium), using a sample of 542 respondents. After performing a regression analysis combined with expert opinions collected through interviews, we find that companies and sole proprietorships with a higher circularity score have a significantly higher resilience score during crises and during normal times, compared to less circular companies. Furthermore, we find that the size of the company does not matter during a crisis to adapt and react flexibly, while it is important when there is no crisis. Finally, we argue that it is the combination of different circular strategies which yields to the highest results for the organizations' resilience and we provide policy recommendations based on the most asked support measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867675200008 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.2; 2023 IF: 3.313
Call Number UA @ admin @ c:irua:191513 Serial 7344
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Chacon, L.; Reynolds, A.M.; Lavoine, N.; Hakovirta, M.; Gonzalez, R.; Van Passel, S.; Venditti, R.A.
Title Environmental sustainability perception toward obvious recovered waste content in paper-based packaging : an online and in-person survey best-worst scaling experiment Type A1 Journal article
Year 2023 Publication Resources, conservation and recycling Abbreviated Journal
Volume (up) 188 Issue Pages 106682-13
Keywords A1 Journal article; Engineering Management (ENM)
Abstract This study explores consumers' visual sustainability impressions of paper-based packaging that has incorporated obvious waste content. Two research questions were addressed concerning (i) the environmental sustainability perception of noticeable waste content in packaging and (ii) the impact of the presentation format (i.e., online versus in-person surveys) when studying these perceptions. Best-worst scaling experiments were conducted, which made respondents choose the 'most' and 'least' environmentally friendly package. Packages were designed using paperboard substrates blending either brown linerboard or white hardwood pulp with different recovered waste materials. The results showed that consumers perceive obvious waste-containing packaging as more environmentally friendly than classical packaging (with no visual waste). Samples with a brown base and agricultural waste were perceived as more sustainable compared to white packaging and the use of paper waste. In addition, the presentation format changed respondents' perception, and should therefore be carefully considered when designing surveys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000867675200002 Publication Date 2022-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.2; 2023 IF: 3.313
Call Number UA @ admin @ c:irua:191509 Serial 7357
Permanent link to this record
 

 
Author Van Echelpoel, R.; Parrilla, M.; Sleegers, N.; Thiruvottriyur Shanmugam, S.; van Nuijs, A.L.N.; Slosse, A.; Van Durme, F.; De Wael, K.
Title Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume (up) 190 Issue Pages 108693-10
Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Identifying and quantifying 3,4-methyl​enedioxy​methamphetamine (MDMA) on-site in suspected illicit drug samples, whether it be at recreational settings or manufacturing sites, is a major challenge for law enforcement agencies (LEAs). Various analytical techniques exist to fulfil this goal, e.g. colourimetry and portable spectroscopic techniques, each having its specific limitations (e.g. low accuracy, fluorescence, no quantification) and strengths (e.g. fast, easy to use). In this work, for the first time, an electrochemical MDMA sensor is presented to become a detection tool that can realistically be used on-site. More specifically, the use of a single buffer solution and an unmodified screen-printed electrode, along with the integration of a data analysis algorithm and mobile application permits the straightforward on-site identification and quantification of MDMA in suspicious samples. Multiple studies investigating different parameters, including pH, concentration, reproducibility, temperature and binary mixture analyses, were executed. To fully understand all the occurring redox processes, liquid chromatography coupled with high-resolution mass spectrometry analysis of partially electrolyzed MDMA samples was performed unravelling oxidation of the methylenedioxy group. Validation of the methodology was executed on 15 MDMA street samples analysed by gas chromatography coupled with mass spectrometry and compared with the performance of a commercial portable Raman and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) device. The novel methodology outperformed the spectroscopic techniques, correctly identifying all 15 street samples. Additionally, the electrochemical sensor predicted the purity of the tablets with a mean absolute error of 2.3%. Overall, this new, electrochemical detection strategy provides LEAs the rapid, low-cost, on-site detection and quantification of MDMA in suspicious samples, without requiring specialized training.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977060400001 Publication Date 2023-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:195415 Serial 8952
Permanent link to this record
 

 
Author Truta, F.; Cruz, A.G.; Tertis, M.; Zaleski, C.; Adamu, G.; Allcock, N.S.; Suciu, M.; Stefan, M.-G.; Kiss, B.; Piletska, E.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title NanoMIPs-based electrochemical sensors for selective detection of amphetamine Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume (up) 191 Issue Pages 108821-10
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A highly sensitive and portable electrochemical sensor based on molecularly imprinted nanoparticles (nanoMIPs) was developed. NanoMIPs were computationally designed for specific recognition of amphetamine, and then synthetized using solid phase synthesis. NanoMIPs were immobilized onto screen-printed carbon electrodes using a composite film comprising chitosan, nanoMIPs, and graphene oxide.Ferrocenylmethyl methacrylate was incorporated in nanoMIPs allowing electrochemical detection. The signal recorded for the electrochemical oxidation of ferrocene has proven to be dependent on the presence of amphetamine interacting with nanMIPs. The sensor was tested successfully with street samples, with high sensitivity and satisfactory recoveries (from 100.9% to 107.6%). These results were validated with UPL-MS/MS. The present technology is suitable for forensic applications in selective determination of amphetamine in street samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008428600001 Publication Date 2023-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:197397 Serial 8903
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K.
Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
Year 2023 Publication Microchemical journal Abbreviated Journal
Volume (up) 193 Issue Pages 109257-11
Keywords A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067945900001 Publication Date 2023-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024
Notes Approved Most recent IF: 4.8; 2023 IF: 3.034
Call Number UA @ admin @ c:irua:198183 Serial 8898
Permanent link to this record
 

 
Author Phuttaro, C.; Krishnan, S.; Saritpongteeraka, K.; Charnnok, B.; Diels, L.; Chaiprapat, S.
Title Integrated poultry waste management by co-digestion with perennial grass : effects of mixing ratio, pretreatments, reaction temperature, and effluent recycle on biomethanation yield Type A1 Journal article
Year 2023 Publication Biochemical engineering journal Abbreviated Journal
Volume (up) 196 Issue Pages 108937-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work aims to enhance the efficiency of integrated poultry waste management in bio-circular-green economy by maximizing the co-digestion of chicken manure and its digestate-grown biomass. In a series of batch assays, Napier grass (NG) was mixed with chicken manure (CM) at various proportions (100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100) to identify co-substrate synergism, followed by physiochemical conditioning (size reduction and ultrasonication) of NG before co-digestion. Results indicated that NG mix of at least 80% was required to gain a full methanation potential of the individual substrates; no synergistic ratio above unity was found. However, the combined effect of size reduction and sonication was found to markedly improve the cosubstrate's biodegradability by 88.7%. The findings were then used to run continuous co-digestion at various operating regimes. In optimal continuous co-digestion condition, NG particle size of 0.6-2.4 mm combined with sonication intensity at 1111 kJ/kgTS improved biomethanation yield as high as 106.3%. Sub-thermophilic digestion at 45 degrees C was shown to give a higher and more stable CH4 yield than at 55 degrees C. Finally, it was also found that recycling liquid effluent at 40% to replace freshwater in feed, although showed no significant difference in CH4 yield (& alpha; = 0.05), noticeably increased system buffer capacity. This optimized biodegradation regime could give co-digestion waste management a higher overall plant efficiency and economic return.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001054826200001 Publication Date 2023-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.9; 2023 IF: 2.892
Call Number UA @ admin @ c:irua:199209 Serial 8887
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D.
Title Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume (up) 199 Issue Pages 112772-112777
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000954788800001 Publication Date 2023-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:196106 Serial 8446
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A.
Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume (up) 200 Issue Pages 112886-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977059100001 Publication Date 2023-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:195598 Serial 7291
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C.
Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
Year 2023 Publication Carbon Abbreviated Journal
Volume (up) 201 Issue Pages 734-744
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868911500004 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
Call Number UA @ admin @ c:irua:191516 Serial 7302
Permanent link to this record
 

 
Author Wittner, N.; Gergely, S.; Slezsák, J.; Broos, W.; Vlaeminck, S.E.; Cornet, I.
Title Follow-up of solid-state fungal wood pretreatment by a novel near-infrared spectroscopy-based lignin calibration model Type A1 Journal article
Year 2023 Publication Journal of microbiological methods Abbreviated Journal
Volume (up) 208 Issue Pages 106725-106727
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Lignin removal plays a crucial role in the efficient bioconversion of lignocellulose to fermentable sugars. As a delignification process, fungal pretreatment has gained great interest due to its environmental friendliness and low energy consumption. In our previous study, a positive linear correlation between acid-insoluble lignin degradation and the achievable enzymatic saccharification yield has been found, hereby highlighting the importance of the close follow-up of lignin degradation during the solid-state fungal pretreatment process. However, the standard quantification of lignin, which relies on the two-step acid hydrolysis of the biomass, is highly laborious and time-consuming. Vibrational spectroscopy has been proven as a fast and easy alternative; however, it has not been extensively researched on lignocellulose subjected to solid-state fungal pretreatment. Therefore, the present study examined the suitability of near-infrared spectroscopy (NIR) for the rapid and easy assessment of lignin content in poplar wood pretreated with Phanerochaete chrysosporium. Furthermore, the predictive power of the obtained calibration model and the recently published ATR-FTIR spectroscopy-based model were compared for the first time using the same fungus-treated wood data set. PLSR was used to correlate the NIR spectra to the acid-insoluble lignin contents (19.9%-27.1%) of pretreated wood. After normalization and second derivation, a PLSR model with a good coefficient of determination (RCV2 = 0.89) and a low root mean square error (RMSECV = 0.55%) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. The performance of this PLSR model was comparably good to the one obtained by ATR-FTIR (RCV2 = 0.87) while it required more extensive spectral pre-processing. In conclusion, both methods will be highly useful for the high-throughput and user-friendly monitoring of lignin degradation in a solid-state fungal pretreatment-based biorefinery concept.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000983287400001 Publication Date 2023-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-7012 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2023 IF: 1.79
Call Number UA @ admin @ c:irua:195814 Serial 9038
Permanent link to this record
 

 
Author Marazzi, E.; Ghojavand, A.; Pirard, J.; Petretto, G.; Charlier, J.-C.; Rignanese, G.-M.
Title Modeling symmetric and defect-free carbon schwarzites into various zeolite templates Type A1 Journal article
Year 2023 Publication Carbon Abbreviated Journal
Volume (up) 215 Issue Pages 118385-118389
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a process has been proposed for generating negatively-curved carbon schwarzites via zeolite-templating (Braun et al., 2018). However, the proposed process leads to atomistic models which are not very symmetric and often rather defective. In the present work, an improved generation approach is developed, by imposing symmetry constraints, which systematically leads to defect-free, hence more stable, schwarzites. The stability of the newly predicted symmetric schwarzites is also compared to that of other carbon nanostructures (in particular carbon nanotubes – CNTs), which could also be accommodated within the same templates. Our results suggest that only a few of these (such as FAU, SBT and SBS) can fit schwarzites more stable than CNTs. Our predictions could help experimentalists in the crucial choice of the template for the challenging synthesis of schwarzites. Furthermore, being highly symmetric and stable phases, the models could also be synthesized by means of other experimental procedures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001078649800001 Publication Date 2023-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.9 Times cited Open Access
Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
Call Number UA @ admin @ c:irua:200314 Serial 9057
Permanent link to this record
 

 
Author Cánovas, R.; Daems, E.; Langley, A.R.; De Wael, K.
Title Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review Type A1 Journal article
Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal
Volume (up) 220 Issue Pages 114881-18
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The WHO estimates that 8–10% of couples are facing fertility problems, often due to inaccuracy in predicting the female's ovulation period controlled by four key hormones. The quantification and monitoring of such key hormones are crucial for the early identification of infertility, but also in improving therapeutic management associated with hormonal imbalance. In this review, we extensively summarize and discuss: i) drawbacks of laboratory methods for fertility testing (costly, invasive, complex) and commercially available point-of-care tests (measuring only one/two of the four key hormones), ii) the understanding of different biosensors for fertility monitoring, and iii) an in-depth classification and overview of aptamer-based sensing of the hormones of interest. This review provides insights on hormone detection strategies for fertility, with a focus on the classification of the current ‘aptasensing’ strategies, aiming to assist as a basic guide for the development of accurate fertility window monitoring tools based on aptamers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000890547600004 Publication Date 2022-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.6; 2023 IF: 7.78
Call Number UA @ admin @ c:irua:191711 Serial 8833
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D.
Title Discovery of core-shell quasicrystalline particles Type A1 Journal article
Year 2023 Publication Scripta materialia Abbreviated Journal
Volume (up) 222 Issue Pages 115040-115046
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000864491400005 Publication Date 2022-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6; 2023 IF: 3.747
Call Number UA @ admin @ c:irua:191489 Serial 7144
Permanent link to this record
 

 
Author De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado Alvarado, A.A.; Audenaert, A.
Title A review on the leaf area index (LAI) in vertical greening systems Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume (up) 229 Issue Pages 109926-14
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Sustainable Pavements and Asphalt Research (SuPAR); Energy and Materials in Infrastructure and Buildings
Abstract The leaf area index (LAI) is a key dynamic parameter in Vertical Greening Systems (VGS). It quantifies the total amount of leaf area in the canopy and largely determines the extent of co-benefits of VGS. Whereas many studies on VGS discuss the importance of the LAI, only few elaborate on the parameter itself, how it is determined and what the current limitations are in VGS. Moreover, although there is scientific consensus on the importance of LAI in VGS, specific non-destructive monitoring techniques for continuous LAI monitoring appear to be absent, which results in limited overall data on the LAI of VGS under different spatial and temporal conditions and problems in quantifying the benefits of VGS in practice. To fill these gaps, this paper specifically focuses on the LAI of VGS and its monitoring techniques. An overview of existing LAI monitoring techniques in the field of VGS is presented. To arrive at dedicated techniques, this is complemented by a thorough analysis of LAI monitoring techniques used in other research fields, e.g. agriculture and forestry. It is established that two indirect techniques for LAI monitoring are currently available in the VGS sector, but a proper standardized sampling methodology currently lacks. Monitoring techniques used in other sectors offer opportunities for developing dedicated monitoring methods for VGS, but require further research due to the specific features of VGS systems. Furthermore, guidelines are proposed for a more standardized LAI determination of reporting of LAI values in VGS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950866100001 Publication Date 2022-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:194575 Serial 9085
Permanent link to this record
 

 
Author Gheysen, J.; Kashiwar, A.; Idrissi, H.; Villanova, J.; Simar, A.
Title Suppressing hydrogen blistering in a magnesium-rich healable laser powder bed fusion aluminum alloy analyzed by in-situ high resolution techniques Type A1 Journal article
Year 2023 Publication Materials & design Abbreviated Journal
Volume (up) 231 Issue Pages 112024-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hydrogen blistering, i.e. precipitation of supersaturated hydrogen at elevated temperatures, increases porosity during heat treatments in 4xxx series Al alloys manufactured by laser powder bed fusion (LPBF), as demonstrated by 3D X-ray nano-imaging in AlSi12. This paper proposes the design of a healable Al alloy to suppress hydrogen blistering and improve the damage management. The strategy consists of solute atoms diffusing towards nano-voids and precipitating on their surface, thereby filling the damage sites. A new healable Al alloy was thus developed and successfully manufactured by LPBF. 3D X-ray nano-imaging evidenced that the addition of Mg in 4xxx series Al alloys suppresses the hydrogen blistering. This is expectedly due to Mg in solid solution which increases the hydrogen solubility in the Al matrix and due to the healing of these hydrogen pores. Moreover, a significant healing of voids smaller than 500 nm diameter is observed. In-situ heating inside transmission electron microscopy pointed out that Al matrix diffuses inside the fractured Mg2Si particles, thereby demonstrating the healing ability of the new alloy. This has opened the doors to development of new healable Al alloys manufactured by LPBF as well as to new post-treatments to tailor mechanical properties and microstructure without hydrogen blistering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001055174900001 Publication Date 2023-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 4.364
Call Number UA @ admin @ c:irua:196536 Serial 8939
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; De Bock, A.; Ysebaert, T.; Belmans, B.; Denys, S.
Title Modeling the hygrothermal behavior of green walls in Comsol Multiphysics® : validation against measurements in a climate chamber Type A1 Journal article
Year 2023 Publication Building and environment Abbreviated Journal
Volume (up) 238 Issue Pages 110377-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings
Abstract Green walls (GW) can diminish building's surface temperature through shading, insulation, and evapotranspiration mechanisms. These can be analyzed by computer models that account for heat and mass transfer phenomena. However, most previous models were one-dimensional thermal simulations in which boundary conditions (BC), like convective moisture transport, were not or only partly considered. The present work proposes a more comprehensive way to predict GW's hygrothermal behavior by integrating a 3D multiphysics model that couples heat and moisture transport in Comsol Multiphysics®. The air cavity that usually separates the GW from the building was also considered. Heat sink terms were added to represent plants' transpiration and substrates' evaporation, considering the leaf area density (LAD) and substrate's water saturation (Sr). The model was validated against experiments where four green wall-test panels (GW-TPs) were evaluated in a climate chamber under steady-state conditions. This provides a much sounder approach for validation than what currently exists (r = 0.97; RMSE = 0.33 °C). The four GW-TPs decreased the masonry's surface temperature in the range of 0.89–1.14 °C (0.97 ± 0.11 SD °C). The average contribution of the evapotranspiration effect was 30%, whereas the contribution of the air cavity was 60.7 ± 0.09%. The temperature at the substrate's rear was reduced on average by 0.57 ± 0.15 SD °C. When solar radiation was considered as a BC, the GW-TPs decreased the building's surface temperature by 10 °C. Lastly, high values of LAD and Sr translated into increased temperature reduction values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001001412600001 Publication Date 2023-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4; 2023 IF: 4.053
Call Number UA @ admin @ c:irua:196467 Serial 8899
Permanent link to this record
 

 
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year 2023 Publication New phytologist Abbreviated Journal
Volume (up) 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access
Notes Approved Most recent IF: 9.4; 2023 IF: 7.33
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Baetens, D.; Ysebaert, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M.
Title Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons Type A1 Journal article
Year 2023 Publication Landscape and urban planning Abbreviated Journal
Volume (up) 243 Issue Pages 104974-13
Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Mitigating the adverse effects of air pollution, especially on human health, is one of the greater contemporary challenges for cities. Street canyons have herein been identified as bottleneck areas in urbanized environments. Focusing on the necessity of fast-response interventions, strategies to control source-receptor pathways (e.g. implementing low boundary walls (LBWs)) are gaining interest. A potential strategy which is greatly overlooked is the adjustment (reduction or displacement) of traffic lanes in order to increase the distance between source (traffic) and recipient (pedestrians). Within our study, computation fluid dynamics (CFD) is used to simulate the impact of alternations to traffic lanes (whether or not combined with LBWs) on the pedestrian exposure to NO2 for a specific case-study (Belgie center dot lei, Antwerp) under two prevailing wind directions. The average differences in NO2 concentrations for the entire pedestrian area ranged between +1.0 % to-3.6 %. On specific locations, reduction up to-8.0 % were reached. In case of perpendicular winds, a lateral displacement of all traffic lanes towards the windward facade including LBWs was found most beneficial to reduce pedestrian exposure. LBWs also showed to be efficient in reducing potential adverse effects of lane displacement under less frequent wind directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001134403700001 Publication Date 2023-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.1 Times cited Open Access
Notes Approved Most recent IF: 9.1; 2023 IF: 4.563
Call Number UA @ admin @ c:irua:201400 Serial 9065
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; De Backer, A.; Van Aert, S.; Nellist, P.
Title Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions Type A1 Journal article
Year 2023 Publication Ultramicroscopy Abbreviated Journal
Volume (up) 246 Issue Pages 113671
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.
Address
Corporate Author Zezhong Zhang Thesis
Publisher Place of Publication Editor
Language Wos 000995063900001 Publication Date 2022-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes European Research Council 770887 PICOMETRICS; Fonds Wetenschappelijk Onderzoek No.G.0502.18N; Horizon 2020, 770887 ; Horizon 2020 Framework Programme; European Research Council, 823717 ESTEEM3 ; esteem3reported; esteem3JRa Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:195890 Serial 7251
Permanent link to this record
 

 
Author Daems, E.; Bassini, S.; Mariën, L.; Op de Beeck, H.; Stratulat, A.; Zwaenepoel, K.; Vandamme, T.; op de Beeck, K.; Koljenovic, S.; Peeters, M.; Van Camp, G.; De Wael, K.
Title Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene Type University Hospital Antwerp
Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal
Volume (up) 249 Issue Pages 115957-7
Keywords University Hospital Antwerp; A1 Journal article; Center for Oncological Research (CORE); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Medical Genetics (MEDGEN)
Abstract Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001155075300001 Publication Date 2023-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record
Impact Factor 12.6 Times cited Open Access
Notes Approved Most recent IF: 12.6; 2023 IF: 7.78
Call Number UA @ admin @ c:irua:201875 Serial 9092
Permanent link to this record
 

 
Author Lobato, I.; De Backer, A.; Van Aert, S.
Title Real-time simulations of ADF STEM probe position-integrated scattering cross-sections for single element fcc crystals in zone axis orientation using a densely connected neural network Type A1 Journal article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 251 Issue Pages 113769
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantification of annular dark field (ADF) scanning transmission electron microscopy (STEM) images in terms

of composition or thickness often relies on probe-position integrated scattering cross sections (PPISCS). In

order to compare experimental PPISCS with theoretically predicted ones, expensive simulations are needed for

a given specimen, zone axis orientation, and a variety of microscope settings. The computation time of such

simulations can be in the order of hours using a single GPU card. ADF STEM simulations can be efficiently

parallelized using multiple GPUs, as the calculation of each pixel is independent of other pixels. However, most

research groups do not have the necessary hardware, and, in the best-case scenario, the simulation time will

only be reduced proportionally to the number of GPUs used. In this manuscript, we use a learning approach and

present a densely connected neural network that is able to perform real-time ADF STEM PPISCS predictions as

a function of atomic column thickness for most common face-centered cubic (fcc) crystals (i.e., Al, Cu, Pd, Ag,

Pt, Au and Pb) along [100] and [111] zone axis orientations, root-mean-square displacements, and microscope

parameters. The proposed architecture is parameter efficient and yields accurate predictions for the PPISCS

values for a wide range of input parameters that are commonly used for aberration-corrected transmission

electron microscopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001011617200001 Publication Date 2023-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N and G0A7723N) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF), Belgium. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:197275 Serial 8812
Permanent link to this record
 

 
Author Denisov, N.; Jannis, D.; Orekhov, A.; Müller-Caspary, K.; Verbeeck, J.
Title Characterization of a Timepix detector for use in SEM acceleration voltage range Type A1 Journal article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 253 Issue Pages 113777
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15–30 keV range was made. In the current work we present images of Point Spread Function, plots of MTF/DQE curves and values of DQE(0) for these detectors. At low beam currents, the silicon detector layer behaviour should be dominant, which could make these findings transferable to any other available detector based on either Medipix2, Timepix or Timepix3 provided the same detector layer is used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001026912700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are grateful to Dr. Lobato for productive discussion of methods. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:198258 Serial 8815
Permanent link to this record
 

 
Author Hofer, C.; Pennycook, T.J.
Title Reliable phase quantification in focused probe electron ptychography of thin materials Type A1 Journal Article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 254 Issue Pages 113829
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Electron ptychography provides highly sensitive, dose efficient phase images which can be corrected for aberrations after the data has been acquired. This is crucial when very precise quantification is required, such as with sensitivity to charge transfer due to bonding. Drift can now be essentially eliminated as a major impediment to focused probe ptychography, which benefits from the availability of easily interpretable simultaneous Z-contrast imaging. However challenges have remained when quantifying the ptychographic phases of atomic sites. The phase response of a single atom has a negative halo which can cause atoms to reduce in phase when brought closer together. When unaccounted for, as in integrating methods of quantification, this effect can completely obscure the effects of charge transfer. Here we provide a new method of quantification that overcomes this challenge, at least for 2D materials, and is robust to experimental parameters such as noise, sample tilt.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071608700001 Publication Date 2023-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access
Notes FWO, G013122N ; Horizon 2020 Framework Programme; Horizon 2020; European Research Council, 802123-HDEM ; European Research Council; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200272 Serial 8987
Permanent link to this record
 

 
Author Van den Broek, W.; Jannis, D.; Verbeeck, J.
Title Convexity constraints on linear background models for electron energy-loss spectra Type A1 Journal Article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 254 Issue Pages 113830
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes ECSEL, 875999 ; Horizon 2020; Horizon 2020 Framework Programme; Electronic Components and Systems for European Leadership; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200588 Serial 8961
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K.
Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume (up) 255 Issue Pages 124208-124211
Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000925076200001 Publication Date 2023-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.1; 2023 IF: 4.162
Call Number UA @ admin @ c:irua:194314 Serial 8890
Permanent link to this record
 

 
Author Zhou, S.; Xu, W.; Xiao, Y.; Xiao, H.; Zhang, J.; Wang, Z.; He, G.; Liu, J.; Li, Y.; Peeters, F.M.
Title Influence of neutron irradiation on X-ray diffraction, Raman spectrum and photoluminescence from pyrolytic and hot-pressed hexagonal boron nitride Type A1 Journal article
Year 2023 Publication Journal of luminescence Abbreviated Journal
Volume (up) 263 Issue Pages 120118-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hexagonal boron nitride (hBN) is considered as an ideal semiconductor material for solid-state neutron detector, owing to its large neutron scattering section because of the low atomic number of B and excellent physical properties. Here we study the influence of neutron irradiation on crystal structure and on intermediate energy state (IMES) levels induced by the presence of impurities and defects in hBN. Large-size and thick pyrolytic and hot-pressed hBN (PBN and HBN) samples, which can be directly applied for neutron detector devices, are prepared and bombarded by neutrons with different irradiation fluences. The SEM and TEM are used to observe the sample difference of PBN and HBN. X-ray diffraction and Raman spectroscopy are applied to examine the influence of neutron irradiation on lattice structures along different crystal directions of PBN and HBN samples. Photoluminescence (PL) is employed to study the effect of neutron irradiation on IMESs in these samples. We find that the neutron irradiation does not alter the in-plane lattice structures of both PBN and HBN samples, but it can release the inter-layer tensions induced by sample growth of the PBN samples. Interestingly and surprisingly, the neutron irradiation does not affect the IMES levels responsible for PL generation, where PL is attributed mainly from phonon-assisted radiative electron-hole coupling for both PBN and HBN samples. Furthermore, the results indicate that the neutron irradiation can weaken the effective carrier-phonon coupling and exciton transitions in PBN and HBN samples. Overall, both PBN and HBN samples show some degree of the resistance to neutron irradiation in terms of these basic physical properties. The interesting and important findings from this work can help us to gain an in-depth understanding of the influence of neutron irradiation on basic physical properties of hBN materials. These effects can be taken into account when designing and applying the hBN materials for neutron detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001077086300001 Publication Date 2023-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2313 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited 1 Open Access
Notes Approved Most recent IF: 3.6; 2023 IF: 2.686
Call Number UA @ admin @ c:irua:200393 Serial 9047
Permanent link to this record
 

 
Author Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad.
Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
Year 2023 Publication Chemical engineering science Abbreviated Journal
Volume (up) 271 Issue Pages 118550
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946293200001 Publication Date 2023-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895
Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237
Permanent link to this record
 

 
Author Skorikov, A.; Batenburg, K.J.; Bals, S.
Title Analysis of 3D elemental distribution in nanomaterials : towards higher throughput and dose efficiency Type A1 Journal article
Year 2023 Publication Journal of microscopy Abbreviated Journal
Volume (up) 289 Issue 3 Pages 157-163
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Many advanced nanomaterials rely on carefully designed morphology and elemental distribution to achieve their functionalities. Among the few experimental techniques that can directly visualise the 3D elemental distribution on the nanoscale are approaches based on electron tomography in combination with energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). Unfortunately, these highly informative methods are severely limited by the fundamentally low signal-to-noise ratio, which makes long experimental times and high electron irradiation doses necessary to obtain reliable 3D reconstructions. Addressing these limitations has been the major research question for the development of these techniques in recent years. This short review outlines the latest progress on the methods to reduce experimental time and electron irradiation dose requirements for 3D elemental distribution analysis and gives an outlook on the development of this field in the near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000910532600001 Publication Date 2022-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2 Times cited 2 Open Access OpenAccess
Notes ERC Consolidator Grant, Grant/Award Number: 815128 Approved Most recent IF: 2; 2023 IF: 1.692
Call Number UA @ admin @ c:irua:193428 Serial 7281
Permanent link to this record
 

 
Author Mercer, Er.; Van Alphen, S.; van Deursen, Cf.a.m.; Righart, Tw.h.; Bongers, Wa.; Snyders, R.; Bogaerts, A.; van de Sanden, Mc.m.; Peeters, Fj.j.
Title Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma Type A1 Journal article
Year 2023 Publication Fuel Abbreviated Journal
Volume (up) 334 Issue Pages 126734
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transforming CO2 into value-added chemicals is crucial to realizing a carbon–neutral economy, and plasma-based conversion, a Power-2-X technology, offers a promising route to realizing an efficient and scalable process. This paper investigates the effects of post-plasma placement of a converging–diverging nozzle in a vortex-stabilized 2.45 GHz CO2 microwave plasma reactor to increase energy efficiency and conversion. The CDN leads to a 21 % relative increase in energy efficiency (31 %) and CO2 conversion (13 %) at high flow rates and near-atmospheric conditions. The most significant performance improvement was seen at low flow rates and sub-atmospheric pressure (300 mbar), where energy efficiency was 23 % and conversion was 28 %, a 71 % relative increase over conditions without the CDN. Using CFD simulations, we found that the CDN produces a change in the flow geometry, leading to a confined temperature profile at the height of the plasma, and forced extraction of CO to the post-CDN region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891307400008 Publication Date 2022-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 810182 – SCOPE ERC Synergy project) and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. In addition, this work has been carried out as part of the Plasma Power to Gas research program with reference 15325, which is by the Netherlands Organization for Scientific Research (NWO) and Alliander N.V. Approved Most recent IF: 7.4; 2023 IF: 4.601
Call Number PLASMANT @ plasmant @c:irua:192784 Serial 7235
Permanent link to this record