toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Martin, J.M.L.; François, J.P.; Gijbels, R. doi  openurl
  Title Accurate ab initio quartic force fields and thermochemistry of FNO and CINO Type A1 Journal article
  Year 1994 Publication The journal of physical chemistry Abbreviated Journal  
  Volume 98 Issue 44 Pages 11394-11400  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The quartic force fields of FNO and CINO have been computed at the CCSD(T)/cc-pVTZ level. Using an ''augmented'' basis set dramatically improves results for FNO but has no significant effect for CINO. The best computed force field for FNO yields harmonic frequencies and fundamentals in excellent agreement with experiment. Overall, the force fields proposed in the present work are probably the most reliable ones ever published for these molecules. Total atomization energies have been computed using basis sets of spdfg quality: our best estimates are Sigma D-0 = 208.5 +/- 1 and 185.4 +/- 1 kcal/mol for FN0 and CINO, respectively. The computed value for FNO suggests a problem with the established experimental heat of formation. Thermodynamic tables in JANAF style at 100-2000 K are presented for both FNO and CINO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1994PP89400022 Publication Date 2005-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12310 Serial 44  
Permanent link to this record
 

 
Author Wu, Y.; Chen, G.; Yu, J.; Wang, D.; Ma, C.; Li, C.; Pennycook, S.J.; Yan, Y.; Wei, S.-H. pdf  doi
openurl 
  Title Hole-induced spontaneous mutual annihilation of dislocation pairs Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 23 Pages 7421-7425  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dislocations are always observed during crystal growth, and it is usually desirable to reduce the dislocation density in high-quality crystals. Here, the annihilation process of the 30 degrees Shockley partial dislocation pairs in CdTe is studied by first-principles calculations. We found that the dislocations can glide relatively easily due to the weak local bonding. Our systematic study of the slipping mechanism of the dislocations suggests that the energy barrier for the annihilation process is low. Band structure calculations reveal that the band bending caused by the charge transfer between the two dislocation cores depends on the core-core distance. A simple linear model is proposed to describe the mechanism of formation of the dislocation pair. More importantly, we demonstrate that hole injection can affect the core structure, increase the mobility, and eventually trigger a spontaneous mutual annihilation, which could be employed as a possible facile way to reduce the dislocation density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501622700017 Publication Date 2019-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.353 Times cited Open Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:165068 Serial 6302  
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C. doi  openurl
  Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 4 Pages 727-734  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948800005 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 88 Open Access  
  Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:158618 Serial 5194  
Permanent link to this record
 

 
Author Kocabas, T.; Ozden, A.; Demiroglu, I.; Cakir, D.; Sevik, C. doi  openurl
  Title Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 9 Issue 15 Pages 4267-4274  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440956500020 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193765 Serial 7779  
Permanent link to this record
 

 
Author Alihosseini, M.; Ghasemi, S.; Ahmadkhani, S.; Alidoosti, M.; Esfahani, D.N.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Electronic properties of oxidized graphene : effects of strain and an electric field on flat bands and the energy gap Type A1 Journal article
  Year 2021 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A multiscale modeling and simulation approach, including first-principles calculations, ab initio molecular dynamics simulations, and a tight binding approach, is employed to study band flattening of the electronic band structure of oxidized monolayer graphene. The width offlat bands can be tuned by strain, the external electric field, and the density of functional groups and their distribution. A transition to a conducting state is found for monolayer graphene with impurities when it is subjected to an electric field of similar to 1.0 V/angstrom. Several parallel impurity-induced flat bands appear in the low-energy spectrum of monolayer graphene when the number of epoxy groups is changed. The width of the flat band decreases with an increase in tensile strain but is independent of the electric field strength. Here an alternative and easy route for obtaining band flattening in thermodynamically stable functionalized monolayer graphene is introduced. Our work discloses a new avenue for research on band flattening in monolayer graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000737988100001 Publication Date 2021-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 7 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:184725 Serial 6987  
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V. pdf  doi
openurl 
  Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 43 Pages 26201-26210  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493865700019 Publication Date 2019-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164664 Serial 6310  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. doi  openurl
  Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 29 Pages 15687-15695  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000406726200022 Publication Date 2017-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:145195 Serial 4715  
Permanent link to this record
 

 
Author Vets, C.; Neyts, E.C. doi  openurl
  Title Stabilities of bimetallic nanoparticles for chirality-selective carbon nanotube growth and the effect of carbon interstitials Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 28 Pages 15430-15436  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Bimetallic nanoparticles play a crucial role in various applications. A better understanding of their properties would facilitate these applications and possibly even enable chirality-specific growth of carbon nanotubes (CNTs). We here examine the stabilities of NiFe, NiGa, and FeGa nanoparticles and the effect of carbon dissolved in NiFe nanoparticles through density functional theory (DFT) calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. We establish that nanoparticles with more Fe in the core and more Ga on the surface are more stable and compare these results with well-known properties such as surface energy and atom size. Furthermore, we find that the nanoparticles become more stable with increasing carbon content, both at 0 K and at 700 K. These results provide a basis for further research into the chirality-specific growth of CNT's.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000406355700050 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:145206 Serial 4725  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 10709-10715  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200063 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126410 Serial 3829  
Permanent link to this record
 

 
Author Nicholls, D.; Li, R.R.; Ware, B.; Pansegrau, C.; Çakir, D.; Hoffmann, M.R.; Oncel, N. doi  openurl
  Title Scanning tunneling microscopy and density functional theory study on zinc(II)-phthalocyanine tetrasulfonic acid on bilayer epitaxial graphene on silicon carbide(0001) Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 9845-9850  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Zinc(II)-phthalocyanine tetrasulfonic acid (Zn-PcS) molecules physisorbed on bilayer epitaxial graphene on silicon carbide (SiC(0001)) were studied by using scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Two different methods were used to deposit Zn-PcS molecules and regardless of the method being used, the surface coverage stayed very low indicating the weakness of surface-molecule interaction. STS measurements revealed that derivative of tunneling current with respect to voltage (dI/dV) measured on Zn-PcS molecules did not exhibit the characteristic dip observed on dI/dV curves of pristine bilayer epitaxial graphene. DFT calculations show that the energy of the lowest unoccupied molecular orbital (LUMO) of the Zn-PcS molecule is below the Dirac point of graphene which enhances local density of states (LDOS). We attribute the disappearance of the dip in the dI/dV curves measured on the Zn-PcS/bilayer system to the LUMO of Zn-PcS. Charge density calculations along Zn-PcS/graphene interface reveal that there is a small charge transfer from graphene to the molecule. Calculated adsorption energy (3.13 eV) of the molecule is notably low and is consistent with the observed low surface coverage at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354339000020 Publication Date 2015-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes ; We gratefully acknowledge the NSF (Grant Nos.: DMR-1306101, EPS-814442, and EPS-1354366) for financial support. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126370 Serial 2947  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 9580-9586  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000353930700066 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 73 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126381 Serial 3747  
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 45 Pages 19519-19531  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883021700001 Publication Date 2022-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access  
  Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:192104 Serial 7311  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. openurl 
  Title Numerical study of the size-dependent melting mechanisms of nickel nanoclusters Type A1 Journal article
  Year 2009 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 113 Issue 7 Pages 2771-2776  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:76495 Serial 2410  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: