|   | 
Details
   web
Records
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C.
Title k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 13 Pages 7439-7450
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000639044400045 Publication Date 2021-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:178264 Serial 8136
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C.
Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 14 Pages 7849-7855
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000641307100032 Publication Date 2021-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:178393 Serial 7729
Permanent link to this record
 

 
Author Gjerding, M.N.; Cavalcante, L.S.R.; Chaves, A.; Thygesen, K.S.
Title Efficient Ab initio modeling of dielectric screening in 2D van der Waals materials : including phonons, substrates, and doping Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 21 Pages 11609-11616
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The quantum electrostatic heterostructure (QEH) model allows for efficient computation of the dielectric screening properties of layered van der Waals (vdW)-bonded heterostructures in terms of the dielectric functions of the individual two-dimensional (2D) layers. Here, we extend the QEH model by including (1) contributions to the dielectric function from infrared active phonons in the 2D layers, (2) screening from homogeneous bulk substrates, and (3) intraband screening from free carriers in doped 2D semiconductor layers. We demonstrate the potential of the extended QEH model by calculating the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN heterostructures, the effect of substrate screening on the exciton series of monolayer MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is distributed as a Python package with a simple command line interface and a comprehensive library of dielectric building blocks for the most common 2D materials, providing an efficient open platform for dielectric modeling of realistic vdW heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000614615900022 Publication Date 2020-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:176187 Serial 7852
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Tchakoua, T.; Gerrits, N.; Smeets, E.W.F.; Kroes, G.-J.
Title SBH17 : benchmark database of barrier heights for dissociative chemisorption on transition metal surfaces Type A1 Journal article
Year 2023 Publication Journal of chemical theory and computation Abbreviated Journal
Volume 19 Issue 1 Pages 245-270
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903286100001 Publication Date 2022-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.5; 2023 IF: 5.245
Call Number UA @ admin @ c:irua:193426 Serial 7274
Permanent link to this record
 

 
Author Bal, K.M.
Title Reweighted Jarzynski sampling : acceleration of rare events and free energy calculation with a bias potential learned from nonequilibrium work Type A1 Journal article
Year 2021 Publication Journal Of Chemical Theory And Computation Abbreviated Journal J Chem Theory Comput
Volume 17 Issue 11 Pages 6766-6774
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We introduce a simple enhanced sampling approach for the calculation of free energy differences and barriers along a one-dimensional reaction coordinate. First, a small number of short nonequilibrium simulations are carried out along the reaction coordinate, and the Jarzynski equality is used to learn an approximate free energy surface from the nonequilibrium work distribution. This free energy estimate is represented in a compact form as an artificial neural network and used as an external bias potential to accelerate rare events in a subsequent molecular dynamics simulation. The final free energy estimate is then obtained by reweighting the equilibrium probability distribution of the reaction coordinate sampled under the influence of the external bias. We apply our reweighted Jarzynski sampling recipe to four processes of varying scales and complexities.spanning chemical reaction in the gas phase, pair association in solution, and droplet nucleation in supersaturated vapor. In all cases, we find reweighted Jarzynski sampling to be a very efficient strategy, resulting in rapid convergence of the free energy to high precision.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000718183600008 Publication Date 2021-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.245
Call Number UA @ admin @ c:irua:184676 Serial 8479
Permanent link to this record
 

 
Author Kummamuru, N.B.; Eimer, D.A.; Idris, Z.
Title Viscosity measurement and correlation of unloaded and CO₂-loaded aqueous solutions of N-methyldiethanolamine + 2-amino-2-methyl-1-propanol Type A1 Journal article
Year 2020 Publication Journal Of Chemical And Engineering Data Abbreviated Journal J Chem Eng Data
Volume 65 Issue 6 Pages 3072-3078
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work contributes to new and complementary experimental viscosity data for blended amine mixtures of aqueous N-methyldiethanolamine + 2-amino-2-methyl-1-propanol (MDEA + AMP) solutions with and without CO2 at different temperatures and mass fractions. For the unloaded MDEA + AMP solutions, measurements were conducted with total amine mass fractions ranging from 0.30 to 0.60. In the case of CO2-loaded aqueous MDEA + AMP solutions, experiments were performed at CO2 loadings ranging from 0.11 to 0.80. Proposed correlations were used to represent viscosity at the unloaded and CO2-loaded solutions within experimental uncertainty.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000541740100016 Publication Date 2020-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9568; 1520-5134 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.6 Times cited Open Access
Notes Approved Most recent IF: 2.6; 2020 IF: 2.323
Call Number UA @ admin @ c:irua:180363 Serial 8737
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J.
Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue 31 Pages 10-12385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000841943600001 Publication Date 2022-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190007 Serial 7215
Permanent link to this record
 

 
Author Skaggs, C.M.; Kang, C.-J.; Perez, C.J.; Hadermann, J.; Emge, T.J.; Frank, C.E.; Pak, C.; Lapidus, S.H.; Walker, D.; Kotliar, G.; Kauzlarich, S.M.; Tan, X.; Greenblatt, M.
Title Ambient and high pressure CuNiSb₂ : metal-ordered and metal-disordered NiAs-type derivative pnictides Type A1 Journal article
Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem
Volume 59 Issue 19 Pages 14058-14069
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P (3) over bar m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P6(3)/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 degrees C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P (3) over bar m1 space group, corroborated by transmission electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580381700028 Publication Date 2020-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6; 2020 IF: 4.857
Call Number UA @ admin @ c:irua:174331 Serial 6714
Permanent link to this record
 

 
Author Wagaarachchige, J.D.; Idris, Z.; Arstad, B.; Kummamuru, N.B.; Sætre, K.A.S.; Halstensen, M.; Jens, K.-J.
Title Low-viscosity nonaqueous sulfolane–amine–methanol solvent blend for reversible CO2 capture Type A1 Journal article
Year 2022 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume 61 Issue 17 Pages 5942-5951
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, the absorption–desorption performance of CO2 in six new solvent blends of amine (diisopropylamine (DPA), 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA), diethanolamine (DEA), diisopropanolamine (DIPA), and ethanolamine (MEA)), sulfolane, and methanol has been monitored using ATR-FTIR spectroscopy. Additionally, NMR-based species confirmation and solvent viscosity analysis were done for DPA solvent samples. The identified CO2 capture products are monomethyl carbonate (MMC), carbamate, carbonate, and bicarbonate anions in different ratios. The DPA solvent formed MMC entirely with 0.88 molCO2/molamine capture capacity, 0.48 molCO2/molamine cyclic capacity, and 3.28 mPa·s CO2-loaded solvent viscosity. MEA, DEA, DIPA, and MDEA were shown to produce a low or a negligible amount of MMC while AMP occupied an intermediate position.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:199111 Serial 8895
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E.
Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
Year 2018 Publication Environmental science and technology Abbreviated Journal
Volume 52 Issue 12 Pages 6729-6742
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436018900004 Publication Date 2018-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151968 Serial 7574
Permanent link to this record
 

 
Author Defoirdt, T.; Vlaeminck, S.E.; Sun, X.; Boon, N.; Clauwaert, P.
Title Ureolytic activity and its regulation in vibrio campbellii and vibrio harveyi in relation to nitrogen recovery from human urine Type A1 Journal article
Year 2017 Publication Environmental science and technology Abbreviated Journal
Volume 51 Issue 22 Pages 13335-13343
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and "motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416496700032 Publication Date 2017-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:147703 Serial 8716
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Jaroszewicz, J.; Grolimund, D.; Sanchez, D.F.; Gomez-Gonzalez, M.A.; Nuyts, G.; Reinoso-Maset, E.; Janssens, K.; Salbu, B.; Brede, D.A.; Lind, O.C.
Title Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed Daphnia magna Type A1 Journal article
Year 2023 Publication Environmental science and technology Abbreviated Journal
Volume 57 Issue 2 Pages 1071-1079
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Micro-and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measure-ments of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compro-mised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000910915100001 Publication Date 2023-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.4; 2023 IF: 6.198
Call Number UA @ admin @ c:irua:193478 Serial 7342
Permanent link to this record
 

 
Author Rossbach, L.M.; Brede, D.A.; Nuyts, G.; Cagno, S.; Olsson, R.M.S.; Oughton, D.H.; Falkenberg, G.; Janssens, K.; Lind, O.C.
Title Synchrotron XRF analysis identifies cerium accumulation colocalized with pharyngeal deformities in CeO₂ NP-exposed caenorhabditis elegans Type A1 Journal article
Year 2022 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 56 Issue 8 Pages 5081-5089
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract A combination of synchrotron radiation-based elementalimaging, in vivo redox status analysis, histology, and toxic responses was usedto investigate the uptake, biodistribution, and adverse effects of Cenanoparticles (CeO2NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3(2.3-26 mg Ce L-1)inCaenorhabditis elegans. Elemental mapping of theexposed nematodes revealed Ce uptake in the alimentary canal prior todepuration. Retention of CeO2NPs was low compared to that of Ce(NO3)3in depurated individuals. X-rayfluorescence (XRF) mapping showed that Cetranslocation was confined to the pharyngeal valve and foregut. Ce(NO3)3exposure significantly decreased growth, fertility, and reproduction, causedslightly reduced fecundity. XRF mapping and histological analysis revealedsevere tissue deformities colocalized with retained Ce surrounding thepharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense,particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2NP-induceddeformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specificdistribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000793137500039 Publication Date 2022-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.4
Call Number UA @ admin @ c:irua:188662 Serial 7216
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K.
Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 55 Issue 12 Pages 8287-8298
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663939900052 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:179779 Serial 7862
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E.
Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 55 Issue 12 Pages 8278-8286
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663939900051 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:179768 Serial 8334
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M.
Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 11 Pages 4188-4195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000661521800032 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:179679 Serial 6854
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A.
Title Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
Year 2021 Publication Biomacromolecules Abbreviated Journal Biomacromolecules
Volume 22 Issue 2 Pages 949-960
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1525-7797 ISBN Additional Links UA library record
Impact Factor 5.246 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.246
Call Number UA @ admin @ c:irua:175296 Serial 7575
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K.
Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 94 Issue 37 Pages 12723-12731
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000855284300001 Publication Date 2022-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:190602 Serial 7190
Permanent link to this record
 

 
Author Girard-Sahun, F.; Lefrancois, P.; Badets, V.; Arbault, S.; Clement, F.
Title Direct sensing of superoxide and its relatives reactive oxygen and nitrogen species in phosphate buffers during cold atmospheric plasmas exposures Type A1 Journal article
Year 2022 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 94 Issue 14 Pages 5555-5565
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study aims at sensing in situ reactive oxygen and nitrogen species (RONS) and specifically superoxide anion (O-2(center dot-)) in aqueous buffer solutions exposed to cold atmospheric plasmas (CAPs). CAPs were generated by ionizing He gas shielded with variable N-2/O-2 mixtures. Thanks to ultramicroelectrodes protected against the high electric fields transported by the ionization waves of CAPs, the production of superoxide and several RONS was electrochemically directly detected in liquids during their plasma exposure. Complementarily, optical emissive spectroscopy (OES) was used to study the plasma phase composition and its correlation with the chemistry in the exposed liquid. The specific production of O-2(center dot-), a biologically reactive redox species, was analyzed by cyclic voltammetry (CV), in both alkaline (pH 11), where the species is fairly stable, and physiological (pH 7.4) conditions, where it is unstable. To understand its generation with respect to the plasma chemistry, we varied the shielding gas composition of CAPs to directly impact on the RONS composition at the plasma-liquid interface. We observed that the production and accumulation of RONS in liquids, including O(2)(center dot-)depends on the plasma composition, with N-2-based shieldings providing the highest superoxide concentrations (few 10s of micromolar at most) and of its derivatives (hundreds of micromolar). In situ spectroscopic and electrochemical analyses provide a high resolution kinetic and quantitative understanding of the interactions between CAPs and physiological solutions for biomedical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805334400013 Publication Date 2022-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:189093 Serial 7143
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K.
Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 94 Issue 13 Pages 5221-5230
Keywords A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000786254500002 Publication Date 2022-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:187522 Serial 7141
Permanent link to this record
 

 
Author Ma, X.; Pavlidis, G.; Dillon, E.; Beltran, V.; Schwartz, J.J.; Thoury, M.; Borondics, F.; Sandt, C.; Kjoller, K.; Berrie, B.H.; Centrone, A.
Title Micro to nano : multiscale IR analyses reveal zinc soap heterogeneity in a 19th-century painting by Corot Type A1 Journal article
Year 2022 Publication Analytical chemistry Abbreviated Journal
Volume 94 Issue 7 Pages 3103-3110
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (mu-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with approximate to 500 and approximate to 10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (mu-FTIR approximate to 10(2) mu m(3), O-PTIR approximate to 10(-1) mu m(3), PTIR approximate to 10(-5) mu m(3)). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often << 0.1 mu m(3)) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (approximate to 1530-1558 cm(-1)) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at approximate to 1596 cm(-1). We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000766206700011 Publication Date 2022-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187380 Serial 8897
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K.
Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 93 Issue 44 Pages 14851-14858
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000718171600037 Publication Date 2021-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:182347 Serial 8038
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K.
Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 93 Issue 40 Pages 13606-13614
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000708550500025 Publication Date 2021-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:181795 Serial 8290
Permanent link to this record
 

 
Author Monico, L.; Cotte, M.; Vanmeert, F.; Amidani, L.; Janssens, K.; Nuyts, G.; Garrevoet, J.; Falkenberg, G.; Glatzel, P.; Romani, A.; Miliani, C.
Title Damages induced by synchrotron radiation-based X-ray microanalysis in chrome yellow paints and related Cr-compounds : assessment, quantification, and mitigation strategies Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 92 Issue 20 Pages 14164-14173
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 <= x <= 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-K-beta X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584418100072 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number UA @ admin @ c:irua:174363 Serial 7754
Permanent link to this record
 

 
Author Wiorek, A.; Parrilla, M.; Cuartero, M.; Crespo, G.A.
Title Epidermal patch with glucose biosensor : pH and temperature correction toward more accurate sweat analysis during sport practice Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 92 Issue 14 Pages 10153-10161
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We present an epidermal patch for glucose analysis in sweat incorporating for the first time pH and temperature correction according to local dynamic fluctuations in sweat during on-body tests. This sort of correction is indeed the main novelty of the paper, being crucial toward reliable measurements in every sensor based on an enzymatic element whose activity strongly depends on pH and temperature. The results herein reported for corrected glucose detection during on-body measurements are supported by a two-step validation protocol: with the biosensor operating off- and on-bodily, correlating the results with UV-vis spectrometry and/or ion chromatography. Importantly, the wearable device is a flexible skin patch that comprises a microfluidic cell designed with a sweat collection zone coupled to a fluidic channel in where the needed electrodes are placed: glucose biosensor, pH potentiometric electrode and a temperature sensor. The glucose biosensor presents a linear range of response within the expected physiological levels of glucose in sweat (10-200 mu M), and the calibration parameters are dynamically adjusted to any change in pH and temperature during the sport practice by means of a new “correction approach”. In addition, the sensor displays a fast response time, appropriate selectivity, and excellent reversibility. A total of 9 validated on-body tests are presented: the outcomes revealed a great potential of the wearable glucose sensor toward the provision of reliable physiological data linked to individuals during sport activity. In particular, the developed “correction approach” is expected to impact into the next generation of wearable devices that digitalize physiological activities through chemical information in a trustable manner for both sport and healthcare applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000554986200089 Publication Date 2020-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number UA @ admin @ c:irua:175265 Serial 7931
Permanent link to this record
 

 
Author Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J.
Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
Year 2023 Publication Cell reports physical science Abbreviated Journal
Volume 4 Issue 7 Pages 101480-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001048074500001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198299 Serial 8893
Permanent link to this record
 

 
Author Sun, C.; Liao, X.; Peng, H.; Zhang, C.; Van Tendeloo, G.; Zhao, Y.; Wu, J.
Title Interfacial gliding-driven lattice oxygen release in layered cathodes Type A1 Journal article
Year 2022 Publication Cell reports physical science Abbreviated Journal
Volume 3 Issue 1 Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The oxygen release of layered cathodes causes many battery failures, but the underlying mechanism in an actual working cathode is still elusive as it involves secondary agglomerates that introduce complicated boundary structures. Here, we report a general structure instability on the mismatch boundaries driven by interfacial gliding-it introduces a shear stress causing a distortion of the metal-oxygen octahedra framework that reduces its kinetic stability. The migration of cations and diffusion of oxygen vacancies continue to degrade the whole particle from the boundary to the interior, followed by the formation of nano-sized cracks on the fast-degrading interfaces. This work reveals a robust chemical and mechanical interplay on the oxygen release inherent to the intergranular boundaries of layered cathodes. It also suggests that radially patterned columnar grains with low-angle planar boundaries would be an efficient approach to mitigate the boundary oxygen release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745659500012 Publication Date 2021-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186420 Serial 6961
Permanent link to this record
 

 
Author Faust, V.; van Alen, T.A.; Op den Camp, H.J.M.; Vlaeminck, S.E.; Ganigué, R.; Boon, N.; Udert, K.M.
Title Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH Type A1 Journal article
Year 2022 Publication Water Research X Abbreviated Journal
Volume 17 Issue Pages 100157-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L−1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L−1 d−1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L−1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L−1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name “Candidatus (Ca.) Nitrosacidococcus urinae” is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of “Ca. Nitrosacidococcus urinae” decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of “Ca. Nitrosacidococcus urinae” correlated with the limited availability of dissolved iron at neutral pH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877925500001 Publication Date 2022-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2589-9147 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190944 Serial 7124
Permanent link to this record
 

 
Author Agrawal, S.; Weissbrodt, D.G.; Annavajhala, M.; Jensen, M.M.; Arroyo, J.M.C.; Wells, G.; Chandran, K.; Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Lackner, S.
Title Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems Type A1 Journal article
Year 2021 Publication Water Research Abbreviated Journal Water Res
Volume 190 Issue Pages 116604
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Quantitative PCR (qPCR) is broadly used as the gold standard to quantify microbial community fractions in environmental microbiology and biotechnology. Benchmarking efforts to ensure the comparability of qPCR data for environmental bioprocesses are still scarce. Also, for partial nitritation/anammox (PN/A) systems systematic investigations are still missing, rendering meta-analysis of reported trends and generic insights potentially precarious. We report a baseline investigation of the variability of qPCR-based analyses for microbial communities applied to PN/A systems. Round-robin testing was performed for three PN/A biomass samples in six laboratories, using the respective in-house DNA extraction and qPCR protocols. The concentration of extracted DNA was significantly different between labs, ranged between 2.7 and 328 ng mg−1 wet biomass. The variability among the qPCR abundance data of different labs was very high (1−7 log fold) but differed for different target microbial guilds. DNA extraction caused maximum variation (3–7 log fold), followed by the primers (1–3 log fold). These insights will guide environmental scientists and engineers as well as treatment plant operators in the interpretation of qPCR data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632807700001 Publication Date 2020-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.942
Call Number UA @ admin @ c:irua:173838 Serial 8672
Permanent link to this record