|
Record |
Links |
|
Author |
Monico, L.; Cotte, M.; Vanmeert, F.; Amidani, L.; Janssens, K.; Nuyts, G.; Garrevoet, J.; Falkenberg, G.; Glatzel, P.; Romani, A.; Miliani, C. |
|
|
Title |
Damages induced by synchrotron radiation-based X-ray microanalysis in chrome yellow paints and related Cr-compounds : assessment, quantification, and mitigation strategies |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Analytical Chemistry |
Abbreviated Journal |
Anal Chem |
|
|
Volume |
92 |
Issue |
20 |
Pages |
14164-14173 |
|
|
Keywords |
A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 <= x <= 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-K-beta X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000584418100072 |
Publication Date |
2020-09-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-2700; 5206-882x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.4 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 7.4; 2020 IF: 6.32 |
|
|
Call Number |
UA @ admin @ c:irua:174363 |
Serial |
7754 |
|
Permanent link to this record |