|   | 
Details
   web
Records
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I.
Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 8 Pages 085301-85311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000899825400001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:193399 Serial 7313
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Magnus induced diode effect for skyrmions in channels with periodic potentials Type A1 Journal article
Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 35 Issue 1 Pages 015804-15810
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -x direction driving and the lower wall for +x direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -x direction driving and the skyrmion velocity depends linearly on the drive. For +x direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -x direction driving, and become strongly trapped for +x direction driving. The preferred -x direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880827900001 Publication Date 2022-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 2.649
Call Number UA @ admin @ c:irua:192031 Serial 7320
Permanent link to this record
 

 
Author Akgenc, B.; Sarikurt, S.; Yagmurcukardes, M.; Ersan, F.
Title Aluminum and lithium sulfur batteries : a review of recent progress and future directions Type A1 Journal article
Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 25 Pages 253002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Advanced materials with various micro-/nanostructures have attracted plenty of attention for decades in energy storage devices such as rechargeable batteries (ion- or sulfur based batteries) and supercapacitors. To improve the electrochemical performance of batteries, it is uttermost important to develop advanced electrode materials. Moreover, the cathode material is also important that it restricts the efficiency and practical application of aluminum-ion batteries. Among the potential cathode materials, sulfur has become an important candidate material for aluminum-ion batteries cause of its considerable specific capacity. Two-dimensional materials are currently potential candidates as electrodes from lab-scale experiments to possible pragmatic theoretical studies. In this review, the fundamental principles, historical progress, latest developments, and major problems in Li-S and Al-S batteries are reviewed. Finally, future directions in terms of the experimental and theoretical applications have prospected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655281200001 Publication Date 2021-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:179034 Serial 6971
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Hieu, N.N.; Ghergherehchi, M.; Feghhi, S.A.H.; Gogova, D.
Title Prediction of two-dimensional bismuth-based chalcogenides Bi₂X₃(X = S, Se, Te) monolayers with orthorhombic structure : a first-principles study Type A1 Journal article
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages 395103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculation is a very powerful tool for discovery and design of novel two-dimensional materials with unique properties needed for the next generation technology. Motivated by the successful preparation of Bi2S3 nanosheets with orthorhombic structure in the last year, herein we gain a deep theoretical insight into the crystal structure, stability, electronic and optical properties of Bi2X3 (X = S, Se, Te) monolayers of orthorhombic phase employing the first-principles calculations. The Molecular dynamics study, phonon spectra, criteria for elastic stability, and cohesive energy results confirm the desired stability of the Bi2X3 monolayers. From S, to Se and Te, the work function value as well as stability of the systems decrease due to the decline in electronegativity. Mechanical properties study reveals that Bi2X3 monolayers have brittle nature. The electronic bandgap values of Bi2S3, Bi2Se3 and Bi2Te3 monolayers are predicted by the HSE06 functional to be 2.05, 1.20 and 1.16 eV, respectively. By assessing the optical properties, it has been found that Bi2X3 monolayers can absorb ultraviolet light. The high in-plane optical anisotropy offers an additional degree of freedom in the design of optical devices. The properties revealed in our survey will stimulate and inspire the search for new approaches of orthorhombic Bi2X3 (X = S, Se, Te) monolayers synthesis and properties manipulation for fabrication of novel nanoelectronic and optoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464700001 Publication Date 2021-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:179863 Serial 7014
Permanent link to this record
 

 
Author Kadu, A.; van Leeuwen, T.; Batenburg, K.J.
Title CoShaRP : a convex program for single-shot tomographic shape sensing Type A1 Journal article
Year 2021 Publication Inverse Problems Abbreviated Journal Inverse Probl
Volume 37 Issue 10 Pages 105005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce single-shot x-ray tomography that aims to estimate the target image from a single cone-beam projection measurement. This linear inverse problem is extremely under-determined since the measurements are far fewer than the number of unknowns. Moreover, it is more challenging than conventional tomography, where a sufficiently large number of projection angles forms the measurements, allowing for a simple inversion process. However, single-shot tomography becomes less severe if the target image is only composed of known shapes. This paper restricts analysis to target image function that can be decomposed into known compactly supported non-negative-valued functions termed shapes. Hence, the shape prior transforms a linear ill-posed image estimation problem to a non-linear problem of estimating the roto-translations of the shapes. We circumvent the non-linearity by using a dictionary of possible roto-translations of the shapes. We propose a convex program CoShaRP, to recover the dictionary coefficients successfully. CoShaRP relies on simplex-type constraints and can be solved quickly using a primal-dual algorithm. The numerical experiments show that CoShaRP recovers shape stably from moderately noisy measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000691743700001 Publication Date 2021-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0266-5611 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.62 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.62
Call Number UA @ admin @ c:irua:181617 Serial 6859
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J.
Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-7
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033135400001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:198001 Serial 8864
Permanent link to this record
 

 
Author Li, Q.; Niklas, K.J.J.; Niinemets, U.; Zhang, L.; Yu, K.; Gielis, J.; Gao, J.; Shi, P.
Title Stomatal shape described by a superellipse in four Magnoliaceae species Type A1 Journal article
Year 2023 Publication Botany letters Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Stomata are essential for the exchange of water vapour and atmospheric gases between vascular plants and their external environments. The stomatal geometries of many plants appear to be elliptical. However, prior studies have not tested whether this is a mathematical reality, particularly since many natural shapes that appear to be ellipses are superellipses with greater or smaller edge curvature than predicted for an ellipse. Compared with the ellipse equation, the superellipse equation includes an additional parameter that allows generation of a larger range of shapes. We randomly selected 240 stomata from each of four Magnoliaceae species to test whether the stomatal geometries are superellipses or ellipses. The stomatal geometries for most stomata (943/960) were found to be described better using the superellipse equation. The traditional “elliptical stomata hypothesis” resulted in an underestimation of the area of stomata, whereas the superellipse equation accurately predicted stomatal area. This finding has important implications for the estimation of stomatal area in studies looking at stomatal shape, geometry, and function.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024190300001 Publication Date 2023-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 12.01.2024
Notes Approved Most recent IF: 1.5; 2023 IF: NA
Call Number UA @ admin @ c:irua:197847 Serial 8935
Permanent link to this record
 

 
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J.
Title Stakeholder perspectives on farmers' resistance towards urban land-use changes in Bahir Dar, Ethiopia Type A1 Journal article
Year 2023 Publication Journal of land use science Abbreviated Journal
Volume 18 Issue 1 Pages 25-38
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Owing to growing uncontrolled land-use change and urban expansion, farmers in urban fringes are struggling to sustain their livelihood. Farmers have been expressing their dissatisfaction at different times. This study analyzes the stakeholders' perspectives on the causes and outcomes of farmers' resistance to land-use change and urban expansion processes by zooming in on Bahir Dar, Ethiopia. The paper is based on focus group discussions with farmers in the neighboring villages, local agricultural extension experts, and, subsequently, key informant interviews of local government officials. Juxtaposing farmers' and local experts' positions reveals that inadequate compensations during land expropriation, lack of good governance in the urban expansion process, and inaccessibility of infrastructures are primary reasons for the farmers' struggle against urban expansion in the urban fringes. This study provides insights into the consequences of unplanned urban development challenges and may inform research and policymaking on sustainable urban development in the area and beyond.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000936397600001 Publication Date 2023-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1747-423x; 1747-4248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.2; 2023 IF: NA
Call Number UA @ admin @ c:irua:195109 Serial 7368
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D.
Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000695956400001 Publication Date 2021-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.879 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 0.879
Call Number UA @ admin @ c:irua:181533 Serial 6892
Permanent link to this record
 

 
Author Soltani, S.; Azadi, H.; Hosseini, S.J.F.; Witlox, F.; Van Passel, S.
Title Marketing innovation in rural small food industries in Iran Type A1 Journal article
Year 2015 Publication Journal of food products marketing Abbreviated Journal
Volume 21 Issue 5 Pages 533-551
Keywords A1 Journal article; Economics; Engineering Management (ENM); Government and Law
Abstract Marketing innovation is essential for small industries to transform products into profit; therefore, understanding its nature and determinants is of utmost importance. This study aimed at understanding marketing innovation and its determinants in the 60 small food industries in the rural areas of Tehran province, Iran. Using a census sampling method, 111 managers of these firms were interviewed. Results showed that the firms performance in marketing innovation is generally weak, and a higher level of radical innovation in marketing is perceived compared to the incremental innovation. Also, a cause-and-effect relationship exists between both product and organizational innovations and marketing innovation. Furthermore, while incremental marketing innovation was negatively influenced by formal R&D unit, product diversification, and the managers years of experience, radical marketing innovation was affected by the capacity of production, product diversification, and managers age and education. The study concluded that in order to boost marketing innovation, innovation should be made also in products and organization. In addition, in order to facilitate the process of marketing innovation, practical and updated training for managers encouraging incremental innovation in marketing, product diversification, and improving R&D activities in the studied firms should be regarded.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2015-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-4446 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:130144 Serial 6225
Permanent link to this record
 

 
Author Gebrehiwot, N.T.; Azadi, H.; Taheri, F.; Van Passel, S.
Title How participation in vegetables market affects livelihoods : empirical evidence from Northern Ethiopia Type A1 Journal article
Year 2018 Publication Journal of international food and agribusiness marketing Abbreviated Journal
Volume 30 Issue 2 Pages 107-131
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Vegetable farmers face a number of challenges in marketing. Having first-hand information about vegetable marketing is essential to devise appropriate strategies aimed at enhancing the value of the vegetable chain. It was in line with this view that the study was conducted to characterize vegetable markets in Northern Ethiopia. In an effort to identify the factors influencing vegetable marketing among farmers, data were collected from 283 farm households who were selected using stratified random sampling. Furthermore, the data were triangulated through focus group discussion (FGD) and key informant interviews. Descriptive statistics and the binary logistic regression model were used to identify the variables and test the probability of their influence in regard to farmers decisions in vegetable marketing. From the 13 explanatory variables included in the binary logistic regression model, six predictors were found to be statistically significant in determining the effects of participation decision on vegetable market. These variables are as follows: household family size, total land holding of the household, amount of vegetable produced and marketed, use of irrigation technologies, contact with extension agents, and access to market information. Relying on a survey result and observations, the findings of the study indicated that vegetable marketing is significantly improving the livelihood of smallholder producers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4438 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:154141 Serial 6210
Permanent link to this record
 

 
Author Matnazarova, S.; Khalilov, U.; Yusupov, M.
Title Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes Type A1 Journal article
Year 2023 Publication Molecular simulation Abbreviated Journal
Volume 49 Issue 17 Pages 1575-1581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) have been successfully used in biomedicine, including cancer therapy, due to their unique physico-chemical properties. Because pristine CNTs exhibit hydrophobic behaviour, they can have a cytotoxic effect on cells, which limits their practical use in biomedicine. The toxicity of CNTs can be reduced by adding water-soluble functional radicals to their surface, i.e. by increasing their hydrophilicity. Another possibility for increasing the hydrophilicity of CNTs is probably filling them with endohedral metal atoms, which has not yet been studied. Thus, in this study, we use computer simulations to investigate the combined effect of endohedral nickel atoms and functional groups on the hydrophilicity of CNTs. Our simulation results show that the introduction of endohedral nickel atoms into CNTs increases their binding energy with functional groups. We also find that the addition of functional groups to the surface of CNT, along with filling it with endohedral nickel atoms, leads to an increase in the dipole moment of the CNT as well as its interaction energy with water, thereby increasing the hydrophilicity of the CNT and, consequently, its solubility in water. This, in turn, can lead to a decrease in CNT toxicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001059544800001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-7022 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.1 Times cited Open Access
Notes Approved Most recent IF: 2.1; 2023 IF: 1.254
Call Number UA @ admin @ c:irua:199261 Serial 9027
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S.
Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
Volume 117 Issue 45 Pages 27825-27835
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000590753400016 Publication Date 2020-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access
Notes Approved Most recent IF: 11.1; 2020 IF: 9.661
Call Number UA @ admin @ c:irua:174323 Serial 8107
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K.
Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
Year 2024 Publication AIP advances Abbreviated Journal
Volume 14 Issue 2 Pages 025030-25035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001163573400005 Publication Date 2024-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203823 Serial 9109
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X.
Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
Year 2023 Publication Applied physics reviews Abbreviated Journal
Volume 10 Issue 3 Pages 031406-31409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001038283300001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15; 2023 IF: 13.667
Call Number UA @ admin @ c:irua:198433 Serial 8847
Permanent link to this record
 

 
Author Leigh, S.; Doyle, S.J.; Smith, G.J.; Gibson, A.R.; Boswell, R.W.; Charles, C.; Dedrick, J.P.
Title Ionization and neutral gas heating efficiency in radio frequency electrothermal microthrusters : the role of driving frequency Type A1 Journal article
Year 2024 Publication Physics of plasmas Abbreviated Journal
Volume 31 Issue 2 Pages 023509-23513
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The development of compact, low power, charge-neutral propulsion sources is of significant recent interest due to the rising application of micro-scale satellite platforms. Among such sources, radio frequency (rf) electrothermal microthrusters present an attractive option due to their scalability, reliability, and tunable control of power coupling to the propellant. For micropropulsion applications, where available power is limited, it is of particular importance to understand how electrical power can be transferred to the propellant efficiently, a process that is underpinned by the plasma sheath dynamics. In this work, two-dimensional fluid/Monte Carlo simulations are employed to investigate the effects of applied voltage frequency on the electron, ion, and neutral heating in an rf capacitively coupled plasma microthruster operating in argon. Variations in the electron and argon ion densities and power deposition, and their consequent effect on neutral-gas heating, are investigated with relation to the phase-averaged and phase-resolved sheath dynamics for rf voltage frequencies of 6-108 MHz at 450 V. Driving voltage frequencies above 40.68 MHz exhibit enhanced volumetric ionization from bulk electrons at the expense of the ion heating efficiency. Lower driving voltage frequencies below 13.56 MHz exhibit more efficient ionization due to secondary electrons and an increasing fraction of rf power deposition into ions. Thermal efficiencies are improved by a factor of 2.5 at 6 MHz as compared to the more traditional 13.56 MHz, indicating a favorable operating regime for low power satellite applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001207449000001 Publication Date 2024-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.115
Call Number UA @ admin @ c:irua:205506 Serial 9156
Permanent link to this record
 

 
Author Mehmonov, K.; Ergasheva, A.; Yusupov, M.; Khalilov, U.
Title The role of carbon monoxide in the catalytic synthesis of endohedral carbyne Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 134 Issue 14 Pages 144303-144307
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique physical properties of carbyne, a novel carbon nanostructure, have attracted considerable interest in modern nanotechnology. While carbyne synthesis has been accomplished successfully using diverse techniques, the underlying mechanisms governing the carbon monoxide-dependent catalytic synthesis of endohedral carbyne remain poorly understood. In this simulation-based study, we investigate the synthesis of endohedral carbyne from carbon and carbon monoxide radicals in the presence of a nickel catalyst inside double-walled carbon nanotubes with a (5,5)@(10,10) structure. The outcome of our investigation demonstrates that the incorporation of the carbon atom within the Ni-n@(5,5)@(10,10) model system initiates the formation of an elongated carbon chain. In contrast, upon the introduction of carbon monoxide radicals, the growth of the carbyne chain is inhibited as a result of the oxidation of endohedral nickel clusters by oxygen atoms after the initial steps of nucleation. Our findings align with prior theoretical, simulation, and experimental investigations, reinforcing their consistency and providing valuable insights into the synthesis of carbyne-based nanodevices that hold promising potential for future advancements in nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001083993400003 Publication Date 2023-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:201233 Serial 9106
Permanent link to this record
 

 
Author Espinosa, I.M.P.; Karaaslan, Y.; Sevik, C.; Martini, A.
Title Atomistic model of the anisotropic response of ortho-Mo₂C to indentation Type A1 Journal article
Year 2023 Publication AIP advances Abbreviated Journal
Volume 13 Issue 6 Pages 065125-65127
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Molybdenum carbide has various applications for which studying the material using classical molecular dynamics simulations would be valuable. Here, we develop an empirical potential within the Tersoff formalism using particle swarm optimization for the orthorhombic phase of Mo2C. The developed potential is shown to predict lattice constants, elastic properties, and equation of state results that are consistent with current and previously reported results from experiments and first principles calculations. We demonstrate the potential with simulations of indentation using multiple indenter sizes that load and unload in three different directions relative to the crystallographic lattice of orthorhombic Mo2C. Direction-dependent force-displacement trends are analyzed and explained in terms of the spatial distributions of stress and strain within the material during indentation. This study reveals the anisotropic elasticity of orthorhombic Mo2C and, more generally, provides researchers with a new empirical potential that can be used to explore the properties and behavior of the material going forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001016472500005 Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198333 Serial 8834
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C.
Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 133 Issue 15 Pages 150902-150937
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079329000001 Publication Date 2023-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:200351 Serial 9105
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 157 Issue 18 Pages 184113-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000885260600002 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Bal, K.M.
Title Nucleation rates from small scale atomistic simulations and transition state theory Type A1 Journal article
Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 155 Issue 14 Pages 144111
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The evaluation of nucleation rates from molecular dynamics trajectories is hampered by the slow nucleation time scale and impact of finite size effects. Here, we show that accurate nucleation rates can be obtained in a very general fashion relying only on the free energy barrier, transition state theory, and a simple dynamical correction for diffusive recrossing. In this setup, the time scale problem is overcome by using enhanced sampling methods, in casu metadynamics, whereas the impact of finite size effects can be naturally circumvented by reconstructing the free energy surface from an appropriate ensemble. Approximations from classical nucleation theory are avoided. We demonstrate the accuracy of the approach by calculating macroscopic rates of droplet nucleation from argon vapor, spanning 16 orders of magnitude and in excellent agreement with literature results, all from simulations of very small (512 atom) systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000755502100008 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.965
Call Number UA @ admin @ c:irua:184937 Serial 8320
Permanent link to this record
 

 
Author Saiz, F.; Karaaslan, Y.; Rurali, R.; Sevik, C.
Title Interatomic potential for predicting the thermal conductivity of zirconium trisulfide monolayers with molecular dynamics Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 15 Pages 155105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present here a new interatomic potential parameter set to predict the thermal conductivity of zirconium trisulfide monolayers. The generated Tersoff-type force field is parameterized using data collected with first-principles calculations. We use non-equilibrium molecular dynamics simulations to predict the thermal conductivity. The generated parameters result in very good agreement in structural, mechanical, and dynamical parameters. The room temperature lattice thermal conductivity ( kappa) of the considered crystal is predicted to be kappa x x = 25.69Wm – 1K – 1 and kappa y y = 42.38Wm – 1K – 1, which both agree well with their corresponding first-principles values with a discrepancy of less than 5%. Moreover, the calculated kappa variation with temperature (200 and 400 K) are comparable within the framework of the accuracy of both first-principles and molecular dynamics simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000641993600001 Publication Date 2021-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:178234 Serial 8112
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M.
Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 118 Issue 14 Pages 143102
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000637703700001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:177731 Serial 6985
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Naseri, M.; Fadlallah, M.M.; Faraji, M.; Ghergherehchi, M.; Gogova, D.; Feghhi, S.A.H.
Title Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer : a first-principles calculation Type A1 Journal article
Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 129 Issue 15 Pages 155103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a two-dimensional (2D) MoSi 2N 4 (MSN) structure has been successfully synthesized [Hong et al., Science 369(6504), 670-674 (2020)]. Motivated by this result, we investigate the structural, electronic, and optical properties of MSN monolayer (MSN-1L) and bilayer (MSN-2L) under the applied electric field (E-field) and strain using density functional theory calculations. We find that the MSN-2L is a semiconductor with an indirect bandgap of 1.60 (1.80)eV using Perdew-Burke-Ernzerhof (HSE06). The bandgap of MSN-2L decreases as the E-field increases from 0.1 to 0.6V/angstrom and for larger E-field up to 1.0V/angstrom the bilayer becomes metallic. As the vertical strain increases, the bandgap decreases; more interestingly, a semiconductor to a metal phase transition is observed at a strain of 12 %. Furthermore, the optical response of the MSN-2L is in the ultraviolet (UV) region of the electromagnetic spectrum. The absorption edge exhibits a blue shift by applying an E-field or a vertical compressive strain. The obtained interesting properties suggest MSN-2L as a promising material in electro-mechanical and UV opto-mechanical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000640620400003 Publication Date 2021-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:178233 Serial 6981
Permanent link to this record
 

 
Author Duflou, R.; Ciubotaru, F.; Vaysset, A.; Heyns, M.; Sorée, B.; Radu, I.P.; Adelmann, C.
Title Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal
Volume 111 Issue 19 Pages 192411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the excitation of spin waves in scaled magnetic waveguides using the magnetoelastic effect. In uniformly magnetized systems, normal strains parallel or perpendicular to the magnetization direction do not lead to spin wave excitation since the magnetoelastic torque is zero. Using micromagnetic simulations, we show that the nonuniformity of the magnetization in submicron waveguides due to the effect of the demagnetizing field leads to the excitation of spin waves for oscillating normal strains both parallel and perpendicular to the magnetization. The excitation by biaxial normal in-plane strain was found to be much more efficient than that by uniaxial normal out-of-plane strain. For narrow waveguides with a width of 200 nm, the excitation efficiency of biaxial normal in-plane strain was comparable to that of shear strain. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414975500027 Publication Date 2017-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152599 Serial 8247
Permanent link to this record
 

 
Author Doevenspeck, J.; Zografos, O.; Gurunarayanan, S.; Lauwereins, R.; Raghavan, P.; Sorée, B.
Title Design and simulation of plasmonic interference-based majority gate Type A1 Journal article
Year 2017 Publication AIP advances Abbreviated Journal
Volume 7 Issue 6 Pages 065116
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Major obstacles in current CMOS technology, such as the interconnect bottleneck and thermal heat management, can be overcome by employing subwavelength-scaled light in plasmonic waveguides and devices. In this work, a plasmonic structure that implements the majority (MAJ) gate function is designed and thoroughly studied through simulations. The structure consists of three merging waveguides, serving as the MAJ gate inputs. The information of the logic signals is encoded in the phase of transmitted surface plasmon polaritons (SPP). SPPs are excited at all three inputs and the phase of the output SPP is determined by theMAJof the input phases. The operating dimensions are identified and the functionality is verified for all input combinations. This is the first reported simulation of a plasmonic MAJ gate and thus contributes to the field of optical computing at the nanoscale. (C) 2017 Author(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404621200036 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152632 Serial 7764
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M.
Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
Year 2017 Publication Journal of applied physics Abbreviated Journal
Volume 121 Issue 4 Pages 044505
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393480100030 Publication Date 2017-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:152673 Serial 8329
Permanent link to this record
 

 
Author Worobiec, A.; Potgieter-Vermaak, S.; Darchuk, L.; Vishnyakov, V.; Potgieter, H.; Van Grieken, R.
Title Behavior of semi-volatile particles under a laser and electron beam: influence on the quality of analytical results Type A1 Journal article
Year 2010 Publication AIP conference proceedings Abbreviated Journal
Volume 1267 Issue Pages 523-524
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281210900279 Publication Date 2010-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:84573 Serial 7553
Permanent link to this record
 

 
Author Darchuk, L.; Worobiec, A.; Khan, V.; Krasnov, V.; Van Grieken, R.
Title Composition of aerosols from the shelter of the Chernobyl power plant Type A1 Journal article
Year 2010 Publication AIP conference proceedings Abbreviated Journal
Volume 1267 Issue Pages 512-513
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281210900273 Publication Date 2010-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:84572 Serial 7705
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N.
Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal
Volume Issue Pages 09003
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652552200053 Publication Date 2020-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume 326 Series Issue Edition
ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179147 Serial 6851
Permanent link to this record