|   | 
Details
   web
Records
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res
Volume 55 Issue 55 Pages 5911-5922
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000376825300013 Publication Date 2016-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:134214 Serial 4158
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.
Title Exceptional layered ordering of cobalt and iron in perovskites Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 2907-2911
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375810400005 Publication Date 2016-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 4 Open Access
Notes Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:133640 Serial 4178
Permanent link to this record
 

 
Author Lottini, E.; López-Ortega, A.; Bertoni, G.; Turner, S.; Meledina, M.; Van Tendeloo, G.; de Julián Fernández, C.; Sangregorio, C.
Title Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 4214-4222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Antiferromagnetic(AFM)|ferrimagnetic(FiM) core|shell (CS) nanoparticles (NPs) of formula Co0.3Fe0.7O|Co0.6Fe2.4O4 with mean diameter from 6 to 18 nm have been synthesized through a one-pot thermal decomposition process. The CS structure has been generated by topotaxial oxidation of the core region, leading to the formation of a highly monodisperse single inverted AFM|FiM CS system with variable AFM-core diameter and constant FiM-shell thickness (~2 nm). The sharp interface, the high structural matching between both phases and the good crystallinity of the AFM material have been structurally demonstrated and are corroborated by the robust exchange-coupling between AFM and FiM phases, which gives rise to one among the largest exchange bias (HE) values ever reported for CS NPs (8.6 kOe) and to a strongly enhanced coercive field (HC). In addition, the investigation of the magnetic properties as a function of the AFM-core size (dAFM), revealed a non-monotonous trend of both HC and HE, which display a maximum value for dAFM = 5 nm (19.3 and 8.6 kOe, respectively). These properties induce a huge improvement of the capability of storing energy of the material, a result which suggests that the combination of highly anisotropic AFM|FiM materials can be an efficient strategy towards the realization of novel Rare Earth-free permanent magnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378973100013 Publication Date 2016-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 48 Open Access
Notes This work was supported by the EU-FP7 through NANOPYME Project (No. 310516) and Integrated Infrastructure Initiative ESTEEM2 (No. 312483). S.T. gratefully acknowledges the FWO Flanders for a post-doctoral scholarship.; esteem2_ta Approved Most recent IF: 9.466
Call Number c:irua:134084 c:irua:134084 Serial 4092
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K.
Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 16 Issue 7 Pages 3699-3708
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379456700020 Publication Date 2016-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 8 Open Access
Notes Approved Most recent IF: 4.055
Call Number UA @ lucian @ c:irua:144690 Serial 4652
Permanent link to this record
 

 
Author Goris, B.; Meledina, M.; Turner, S.; Zhong, Z.; Batenburg, K.J.; Bals, S.
Title Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 171 Issue 171 Pages 55-62
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe2+ dopants is correlated with a reduction of the Ce atoms from Ce4+ towards Ce3+. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389106200007 Publication Date 2016-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access OpenAccess
Notes The work was supported by the Research Foundation Flanders (FWO Vlaanderen) by project funding (G038116N, 3G004613) and by a post-doctoral research grants to B.G. S.B. acknowledges funding from the European Research Council (Starting Grant no. COLOURATOMS 335078). K.J.B. acknowledges funding from The Netherlands Organization for Scientific Research (NWO) (program 639.072.005.). We would like to thank Dr. Hilde Poelman, Dr. Vladimir Galvita and Prof. Dr. Guy B. Marin for the synthesis of the investigated sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843
Call Number c:irua:135185 c:irua:135185 Serial 4123
Permanent link to this record
 

 
Author Wang, A.; Turner, S.; Van Aert, S.; van Dyck, D.
Title An alternative approach to determine attainable resolution directly from HREM images Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 133 Issue Pages 50-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The concept of resolution in high-resolution electron microscopy (HREM) is the power to resolve neighboring atoms. Since the resolution is related to the width of the point spread function of the microscope, it could in principle be determined from the image of a point object. However, in electron microscopy there are no ideal point objects. The smallest object is an individual atom. If the width of an atom is much smaller than the resolution of the microscope, this atom can still be considered as a point object. As the resolution of the microscope enters the sub-Å regime, information about the microscope is strongly entangled with the information about the atoms in HREM images. Therefore, we need to find an alternative method to determine the resolution in an object-independent way. In this work we propose to use the image wave of a crystalline object in zone axis orientation. Under this condition, the atoms of a column act as small lenses so that the electron beam channels through the atom column periodically. Because of this focusing, the image wave of the column can be much more peaked than the constituting atoms and can thus be a much more sensitive probe to measure the resolution. Our approach is to use the peakiness of the image wave of the atom column to determine the resolution. We will show that the resolution can be directly linked to the total curvature of the atom column wave. Moreover, we can then directly obtain the resolution of the microscope given that the contribution from the object is known, which is related to the bounding energy of the atom. The method is applied on an experimental CaTiO3 image wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324471800007 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.843 Times cited Open Access
Notes FWO; Hercules; Esteem2; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109919 Serial 90
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.;
Title Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
Year 2015 Publication Nano energy Abbreviated Journal Nano Energy
Volume 16 Issue 16 Pages 256-267
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364579300027 Publication Date 2015-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 27 Open Access
Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325
Call Number c:irua:127688 Serial 296
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; Van Tendeloo, G.
Title Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 210 Issue 210 Pages 185-193
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag+ (Ag-HEU) and Zn2+ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag+ and Zn2+ ions is studied. In the case of Ag-HEU, the presence of Ag+ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanopartides are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters. (c) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000353733300024 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access
Notes 246791 Countatoms; Iap-Pai; Fwo Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:126006 Serial 715
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
Year 2020 Publication Matter Abbreviated Journal
Volume 3 Issue 4 Pages 1226-1245
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581132600021 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174329 Serial 6727
Permanent link to this record
 

 
Author Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dirtu, M.M.; Turner, S.; Van Tendeloo, G.; Garcia, Y.; Du Laing, G.; Van Der Voort, P.
Title Removal of arsenic and mercury species from water by covalent triazine framework encapsulated \gamma-Fe2O3 nanoparticles Type A1 Journal article
Year 2018 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 353 Issue 353 Pages 312-319
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The covalent triazine framework, CTF-1, served as host material for the in situ synthesis of Fe2O3 nanoparticles. The composite material consisted of 20 +/- 2 m% iron, mainly in gamma-Fe2O3 phase. The resulting gamma-Fe2O3@CTF-1 was examined for the adsorption of As-III, As-V and H-II from synthetic solutions and real surface-, ground- and wastewater. The material shows excellent removal efficiencies, independent from the presence of Ca2+, Mg2+ or natural organic matter and only limited dependency on the presence of phosphate ions. Its adsorption capacity towards arsenite (198.0 mg g(-1)), arsenate (102.3 mg g(-1)) and divalent mercury (165.8 mg g(-1)) belongs amongst the best-known adsorbents, including many other iron-based materials. Regeneration of the adsorbent can be achieved for use over multiple cycles without a decrease in performance by elution at 70 degrees C with 0.1 M NaOH, followed by a stirring step in a 5 m% H2O2 solution for As or 0.1 M thiourea and 0.001 M HCl for Hg. In highly contaminated water (100 mu gL(-1)), the adsorbent polishes the water quality to well below the current WHO limits.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000438002800035 Publication Date 2018-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 22 Open Access OpenAccess
Notes ; Karen Leus acknowledges financial support from Ghent University. Nina Ricci Nicomel and Jeffrey Paulo H. Perez thank the funding of the VLIR-UOS. Marinela M. Dirtu acknowledges F.R.S.-FNRS for a Charge de recherches position. Stuart Turner gratefully acknowledges the FWO Vlaanderen for a post-doctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. ; Approved Most recent IF: 6.065
Call Number UA @ lucian @ c:irua:152430 Serial 5124
Permanent link to this record
 

 
Author Esquivel, D.; Ouwehand, J.; Meledina, M.; Turner, S.; Tendeloo, G.V.; Romero-Salguero, F.J.; Clercq, J.D.; Voort, P.V.D.
Title Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation Type A1 Journal article
Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 339 Issue 339 Pages 368-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3 mmol/g sulfur functions in the walls and can adsorb up to 1183 mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman’s reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407188200040 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 12 Open Access OpenAccess
Notes D.E. thanks the F.W.O. Flanders (Fund Scientific Research) for a postdoctoral grant (3E10813W). J.O. acknowledges also F.W.O. Flanders, research project G006813N, and the research Board of Ghent University, UGent GOA (Concerted Research Actions) (grant 01G00710) for financial support. F. J. R.-S. acknowledges funding of this research by the Spanish Ministry of Economy and Competitiveness (Project MAT2013-44463-R), Andalusian Regional Government (FQM-346 group), and Feder Funds. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. Approved Most recent IF: 6.065
Call Number EMAT @ emat @ c:irua:144433 Serial 4624
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K.
Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 64 Issue 64 Pages 163-168
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374608100020 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 11 Open Access
Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561
Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091
Permanent link to this record
 

 
Author Felgen, N.; Naydenov, B.; Turner, S.; Jelezko, F.; Reithmaier, J.P.; Popov, C.
Title Incorporation and study of SiV centers in diamond nanopillars Type A1 Journal article
Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 64 Issue 64 Pages 64-69
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the incorporation of SiV centers during hot filament chemical vapor deposition of diamond on top of diamond nanopillars with diameters down to 100 nm. The nanopillars themselves were prepared from nano crystalline diamond films by applying electron beam lithography and inductively coupled plasma reactive ion etching. The optical investigations revealed the presence of ensembles of SiV color centers incorporated during the overgrowth step. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000374608100009 Publication Date 2016-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 14 Open Access
Notes Approved Most recent IF: 2.561
Call Number UA @ lucian @ c:irua:133623 Serial 4193
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G.
Title Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type A1 Journal article
Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 699-708
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357869100003 Publication Date 2015-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited Open Access
Notes IWT Flanders Approved Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:126676 Serial 3051
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S.
Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 2 Issue 2 Pages 1500313
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368914700011 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 56 Open Access
Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA
Call Number c:irua:129201 Serial 3957
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Turner, S.; Van Tendeloo, G.
Title Fabrication and Characterization of Fe2O3-Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers Type A1 Journal article
Year 2015 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 10 Issue 10 Pages 239-243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the design of nanosystems based on functionalized -Fe 2 O 3 nanostructures supported on fluorine-doped tin oxide (FTO) substrates. The target materials were developed by means of hybrid vapor phase approaches, combining plasma assisted-chemical vapor deposition (PA-CVD) for the production of iron(III) oxide systems and the subsequent radio frequency (RF)-sputtering or atomic layer deposition (ALD) for the functionalization with Au nanoparticles or TiO 2 overlayers, respectively. The interplay between material characteristics and the adopted processing parameters was investigated by complementary analytical techniques, encompassing X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS). The obtained results highlight the possibility of fabricating Au/ -Fe 2 O 3 nanocomposites, with a controlled dispersion and distribution of metal particles, and TiO 2 / -Fe 2 O 3 heterostructures, characterized by an intimate coupling between the constituent oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes The authors acknowledge the financial support under the FP7 project “SOLARO- GENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2015 projects, grant n CPDR132937/13 (SOLLEONE), and Regione Lombardia- INSTM ATLANTE program. Stuart Turner acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Dr. L. Borgese and Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia Univer- sity, Italy) for precious assistance in ALD experiments. Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:132798 Serial 4058
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
Year 2012 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 7 Issue 2 Pages 84-90
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2012-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Esteem Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:105298 Serial 3932
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G.
Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 115009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366193000018 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 4 Open Access
Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129199 c:irua:129199 Serial 3942
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G.
Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 7 Pages 075016-75018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000319973800024 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 11 Open Access
Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.;
Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue 109 Pages 062105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000383183600025 Publication Date 2016-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:137160 Serial 4407
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G.
Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 24 Pages 241910
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000312490000035 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Van Tendeloo, G.
Title Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 4 Pages 041907
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The boron dopant distribution in individual heavily boron-doped nanocrystalline diamond film grains, with sizes ranging from 100 to 350nm in diameter, has been studied using a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these tools, the boron distribution and local boron coordination have been determined. Quantification results reveal embedding of B dopants in the diamond lattice, and a preferential enrichment of boron at defective areas and twin boundaries. Coordination mapping reveals a distinct difference in coordination of the B dopants in “pristine” diamond areas and in defective regions. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738885]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000306944700030 Publication Date 2012-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 59 Open Access
Notes This work was performed within the framework of an IAP P6/42 project of the Belgian government. The authors acknowledge financial support from the Fund for Scientific Research Flanders (FWO) under Contract No. G.0568.10N. The authors acknowledge support from the European Union under a Contract from an Integrated Infrastructure Initiative (Reference 262348 ESMI), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). G.V.T. and J.V. acknowledge the ERC Grant N246791-COUNTATOMS and ERC Starting Grant 278510 VORTEX. S.T. gratefully acknowledges financial support from the FWO. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. ECASJO_; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100468UA @ admin @ c:irua:100468 Serial 726
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume 6 Issue 6 Pages 1863-1869
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372172800031 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 12 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773
Call Number c:irua:133167 Serial 4057
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A.
Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 6 Pages 5757-5764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338089200039 Publication Date 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 71 Open Access
Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:117599 Serial 3683
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 21 Pages 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 10 Pages 1904-1909
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000304237500024 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Warwick, M.E.A.; Sada, C.; Turner, S.; Bazzo, A.; Andreu, T.; Pliekhova, O.; Korte, D.; Lavrenčič Štangar, U.; Van Tendeloo, G.; Morante, J.R.; Barreca, D.
Title Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction Type A1 Journal article
Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 159 Issue 159 Pages 456-466
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma- assisted approach for the synthesis of Fe 2 O 3 -TiO 2 nanosystems functionalized with Au nanoparticles. Fe 2 O 3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H 2 O splitting and photocatalytic activity tests in view of self- cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe 2 O 3 -TiO 2 -Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388053600053 Publication Date 2016-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 15 Open Access Not_Open_Access
Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as from Padova University ex-60% 2013-2016 projects, grant no. CPDR132937/13 (SOLLEONE) and the post-doc fellowship ACTION. INFINITY project in the framework of the EU Erasmus Mundus Action 2 is also acknowledged to provide a Ph.D. financial support as well as Slovenian Research Agency (program P2-0377). The authors are grateful to Dr. E. Toniato (Department of Chemistry, Padova University, Italy) for synthetic assistance and to Prof. E. Bontempi and Dr. M. Brisotto (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 4.784
Call Number EMAT @ emat @ c:irua:135833 Serial 4284
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G.
Title Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers Type A1 Journal article
Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 509 Issue 509 Pages 208-218
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with d-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000378949800022 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.649 Times cited 37 Open Access
Notes This work is performed within the framework of the IAP-P7/05. S.T. Gratefully acknowledges the Fund for Scientific Research Flanders (FWO). K.L. acknowledges the financial support from the Ghent University BOF postdoctoral grant 01P06813T and UGent GOA Grant 01G00710. Approved Most recent IF: 3.649
Call Number c:irua:134039 Serial 4088
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A.
Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ
Volume 41 Issue 41 Pages 14404-14428
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor
Language Wos 000381950800051 Publication Date 2016-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 89 Open Access Not_Open_Access
Notes All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582
Call Number UA @ lucian @ c:irua:135723 Serial 4307
Permanent link to this record