toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ke, X.; Turner, S.; Quintana, M.; Hadad, C.; Montellano-López, A.; Carraro, M.; Sartorel, A.; Bonchio, M.; Prato, M.; Bittencourt, C.; Van Tendeloo, G.; pdf  doi
openurl 
  Title (down) Dynamic motion of Ru-polyoxometalate ions (POMs) on functionalized few-layer graphene Type A1 Journal article
  Year 2013 Publication Small Abbreviated Journal Small  
  Volume 9 Issue 23 Pages 3922-3927  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction and stability of Ru4POM on few layer graphene via functional groups is investigated by time-dependent imaging using aberration-corrected transmission electron microscopy. The Ru4POM demonstrates dynamic motion on the graphene surface with its frequency and amplitude of rotation related to the nature of the functional group used. The stability of the Ru4POMgraphene hybrid corroborates its long-term robustness when applied to multielectronic catalytic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000331282400003 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 16 Open Access  
  Notes IAP-7; Countatoms; Approved Most recent IF: 8.643; 2013 IF: 7.514  
  Call Number UA @ lucian @ c:irua:115768 Serial 763  
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 7 Pages 2524-2529  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303038400015 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:96956 Serial 711  
Permanent link to this record
 

 
Author Bertoni, G.; Grillo, V.; Brescia, R.; Ke, X.; Bals, S.; Catellani, A.; Li, H.; Manna, L. doi  openurl
  Title (down) Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals Type A1 Journal article
  Year 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 7 Pages 6453-6461  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The ability to determine the atomic arrangement and termination of various facets of surfactant-coated nanocrystals is of great importance for understanding their growth mechanism and their surface properties and represents a critical piece of information that can be coupled to other experimental techniques and to calculations. This is especially appealing in the study of nanocrystals that can be grown in strongly anisotropic shapes, for which the relative growth rates of various facets can be influenced under varying reaction conditions. Here we show that in two representative cases of rod-shaped nanocrystals in the wurtzite phase (CdSe(core)/CdS(shell) and ZnSe(core)/ZnS(shell) nanorods) the terminations of the polar facets can be resolved unambiguously by combining advanced electron microscopy techniques, such as aberration-corrected HRTEM with exit wave reconstruction or aberration-corrected HAADF-STEM. The [0001] and [000-1] polar directions of these rods, which grow preferentially along their c-axis, are revealed clearly, with one side consisting of the Cd (or Zn)-terminated (0001) facet and the other side with a pronounced faceting due to Cd (or Zn)-terminated {10-1-1} facets. The lateral faceting of the rods is instead dominated by three nonpolar {10-10} facets. The core buried in the nanostructure can be localized in both the exit wave phase and HAADF-STEM images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306673800079 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 63 Open Access  
  Notes The authors gratefully acknowledge funding from the European Research Council under grant number 240111 (NANO-ARCH) and the financial support from the Flemish Hercules 3 Programme for large infrastructures. G.B. and V.G. thank E. Rotunno for his help with STEM_CELL and IWFR. Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:101138 Serial 710  
Permanent link to this record
 

 
Author Ribbens, S.; Meynen, V.; Van Tendeloo, G.; Ke, X.; Mertens, M.; Maes, B.U.W.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title (down) Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 114 Issue 1/3 Pages 401-409  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract Titanate nanotubes were prepared via a hydrothermal treatment of TiO2 powders (Riedel De Haen) in a basic solution. Morphology and structure of the prepared samples were characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), XRD, FT-Raman spectroscopy, nitrogen sorption and DSC. The photocatalytic activity was evaluated by photocatalytic oxidation of rhodamine 6G. Trititanate nanotubes (TTNT) with inner pore diameters between 4 and 4.2 nm and surface areas up till 360 m(2)/g could be synthesized. The synthesis route was modified by introduction of a calcination step, by applying a lower hydrothermal temperature and microwave irradiation in order to increase the photocatalytic activity of the porous photoactive nanotubular materials. Calcination and a softer hydrothermal treatment led to the formation of anatase without affecting the surface area and nanotubular shape of the samples. In this way, the photocatalytic activity of the original trititanate nanotubes could be significantly increased. By making use of microwave assisted synthesis, the photocatalytic activity call also be increased due to the presence of anatase. However, by applying microwave synthesis, a different structure was obtained, nanoribbons (NR) instead of nanotubcs, resulting in a decrease in surface area and porosity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000258432100040 Publication Date 2008-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 47 Open Access  
  Notes Fwo; Crp (Ua) Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:69696 Serial 683  
Permanent link to this record
 

 
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title (down) Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 37 Pages 375501-375511  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000258385600014 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 48 Open Access  
  Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:103083 Serial 282  
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P. pdf  doi
openurl 
  Title (down) Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 42 Pages 20412-20418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000296205600009 Publication Date 2011-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 31 Open Access  
  Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91890 Serial 174  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title (down) Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Zhong, R.; Peng, L.; de Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title (down) An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis Type A1 Journal article
  Year 2015 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 7 Issue 7 Pages 3047-3058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of ordered mesoporous silica-carbon composites was explored by employing TEOS and sucrose as the silica and carbon precursor respectively, and the triblock copolymer F127 as a structure-directing agent via an evaporation-induced self-assembly (EISA) process. It is demonstrated that the synthesis procedures allow for control of the textural properties and final composition of these silica-carbon nanocomposites via adjustment of the effective SiO2/C weight ratio. Characterization by SAXS, N-2 physisorption, HRTEM, TGA, and C-13 and Si-29 solid-state MAS NMR show a 2D hexagonal mesostructure with uniform large pore size ranging from 5.2 to 7.6nm, comprising of separate carbon phases in a continuous silica phase. Ordered mesoporous silica and non-ordered porous carbon can be obtained by combustion of the pyrolyzed nanocomposites in air or etching with HF solution, respectively. Sulfonic acid groups can be readily introduced to such kind of silica-carbon nanocomposites by a standard sulfonation procedure with concentrated sulfuric acid. Excellent acid-catalytic activities and selectivities for the dimerization of styrene to produce 1,3-diphenyl-1-butene and dimerization of -methylstyrene to unsaturated dimers were demonstrated with the sulfonated materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361189400037 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.803 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.803; 2015 IF: 4.556  
  Call Number UA @ lucian @ c:irua:127836 Serial 4138  
Permanent link to this record
 

 
Author Zhang, J.; Ke, X.; Gou, G.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.I.; Minor, A.M.; Chu, Y.h.; Van Tendeloo, G.; Ren, X.; Ramesh, R.; pdf  doi
openurl 
  Title (down) A nanoscale shape memory oxide Type A1 Journal article
  Year 2013 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 4 Issue Pages 2768-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm−3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328023900006 Publication Date 2013-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 67 Open Access  
  Notes Countatoms Approved Most recent IF: 12.124; 2013 IF: 10.742  
  Call Number UA @ lucian @ c:irua:111431 Serial 2271  
Permanent link to this record
 

 
Author Corthals, S.; van Noyen, J.; Liang, D.; Ke, X.; Van Tendeloo, G.; Jacobs, P.; Sels, B. pdf  doi
openurl 
  Title (down) A cyclic catalyst pretreatment in CO2 for high yield production of Carbon nanofibers with narrow diameter distribution Type A1 Journal article
  Year 2011 Publication Catalysis letters Abbreviated Journal Catal Lett  
  Volume 141 Issue 11 Pages 1621-1624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a cyclic catalyst pretreatment process to improve the CNF yield with narrow size distribution by sequentially feeding the CVD reactor with CH4/CO2 mixtures (carbon deposition) and CO2 (carbon removal) prior to the actual growth process. A mechanism based on a break-up of large Ni particles tentatively explains the beneficial effect of the cyclic carbon deposition/removal CVD procedure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Basel Editor  
  Language Wos 000296471400006 Publication Date 2011-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1011-372X;1572-879X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.799 Times cited 1 Open Access  
  Notes Iwt; Iap Approved Most recent IF: 2.799; 2011 IF: 2.242  
  Call Number UA @ lucian @ c:irua:91888 Serial 598  
Permanent link to this record
 

 
Author Liu, J.; Hu, Z.-Y.; Peng, Y.; Huang, H.-W.; Li, Y.; Wu, M.; Ke, X.-X.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title (down) 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 181 Issue 181 Pages 138-145  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two dimensional (2D) ZnO nanosheets are ideal system for dimensionally confined transport phenomenon investigation owing to specific surface atomic configuration. Therefore, 2D ZnO porous nanosheets with single-crystal nature and {0001} polar facets, likely display some specific physicochemical properties. In this work, for the first time, 2D ZnO mesoporous single-crystal nanosheets (ZnO-MSN) with {0001} polar facets have been designed and prepared via an intriguing colloidal templating approach through controlling the infiltration speed for the suspension of EG-capped ZnO nanoparticles and polymer colloids. The EG-capped ZnO nanoparticles are very helpful for single-crystal nanosheet formation, while the polymer colloids play dual roles on the mesoporosity generation and {0001} polar facets formation within the mesopores. Such special 2D structure not only accelerates the hole-electron separation and the electron transportation owing to the single-crystal nature, but also enhances the selective adsorption of organic molecules owing to the porous structure and the exposed {0001} polar facets with more O-termination (000-1) surfaces: the 2D ZnO-MSN shows highly selective adsorption and significantly higher photodegradation for positively charged rhodamine B than those for negatively charged methyl orange and neutral phenol, comparing with ZnO nanoparticles (ZnO-NP) and ZnO commercial nanoparticles (ZnO-CNP) with high surface areas. This work may shed some light on better understanding the synthesis of 2D porous single-crystal nanosheet with exposed polar surfaces and photocatalytic mechanism of nanostructured semiconductors in a mixed organic molecules system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000364256000015 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 60 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 9.446  
  Call Number c:irua:127638 c:irua:127638 c:irua:127638 Serial 10  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: