toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J. pdf  doi
openurl 
  Title (down) Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 14 Pages 4788-4798  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000440105500037 Publication Date 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:153156 Serial 5107  
Permanent link to this record
 

 
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J. pdf  url
doi  openurl
  Title (down) Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 001174840900001 Publication Date 2024-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:204354 Serial 8997  
Permanent link to this record
 

 
Author Morozov, V.A.; Bertha, A.; Meert, K.W.; Van Rompaey, S.; Batuk, D.; Martinez, G.T.; Van Aert, S.; Smet, P.F.; Raskina, M.V.; Poelman, D.; Abakumov, A.M.; Hadermann, J.; doi  openurl
  Title (down) Incommensurate modulation and luminescence in the CaGd2(1-x)Eu2x(MoO4)4(1-y)(WO)4y (0\leq x\leq1, 0\leq y\leq1) red phosphors Type A1 Journal article
  Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 25 Issue 21 Pages 4387-4395  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '') [(B',B '')O-4], with B', B '' = W and/or Mo are promising new light-emitting materials for photonic applications, including phosphor converted LEDs (light-emitting diodes). In this paper, the creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescent properties. CaGd2(1-x)Eu2x(MoO4)(4(1-y))(WO4)(4y) (0 <= x <= 1, 0 <= y <= 1) solid solutions with scheelite-type structure were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder X-ray diffraction. Within this series all complex molybdenum oxides have (3 + 2)D incommensurately modulated structures with superspace group I4(1)/a(alpha,beta,0)00(-beta,alpha,0)00, while the structures of all tungstates are (3 + 1)D incommensurately modulated with superspace group I2/b(alpha beta 0)00. In both cases the modulation arises because of cation-vacancy ordering at the A site. The prominent structural motif is formed by columns of A-site vacancies running along the c-axis. These vacant columns occur in rows of two or three aligned along the [110] direction of the scheelite subcell. The replacement of the smaller Gd3+ by the larger Eu3+ at the A-sublattice does not affect the nature of the incommensurate modulation, but an increasing replacement of Mo6+ by W6+ switches the modulation from (3 + 2)D to (3 + 1)D regime. Thus, these solid solutions can be considered as a model system where the incommensurate modulation can be monitored as a function of cation nature while the number of cation vacancies at the A sites remain constant upon the isovalent cation replacement. All compounds' luminescent properties were measured, and the optical properties were related to the structural properties of the materials. CaGd2(1-x)(MoO4)(4(1-y))(WO4)(4y) phosphors emit intense red light dominated by the D-5(0)-F-7(2) transition at 612 nm, along with other transitions from the D-5(1) and D-5(0) excited states. The intensity of the 5D0-7F2 transition reaches a maximum at x = 0.5 for y = 0 and 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327045000030 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 63 Open Access  
  Notes Approved Most recent IF: 9.466; 2013 IF: 8.535  
  Call Number UA @ lucian @ c:irua:112776 Serial 1594  
Permanent link to this record
 

 
Author Malo, S.; Lepoittevin, C.; Pérez, O.; Hébert, S.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title (down) Incommensurate crystallographic shear structures and magnetic properties of the cation deficient perovskite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 5 Pages 1788-1797  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The origin of the incommensurability in the crystallographic shear (CS) structure of the ferri-Manganite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, related to the cation deficient perovskite, has been determined by careful analysis of the boundaries between the two variants constituting the phasoid. High Resolution Electron Microscopy/HAADF-STEM images allow the structural mechanisms to be understood through the presence of structural units common to both phases, responsible of the incommensurate character observed in the electron diffraction patterns. The structural analysis allows for identifying different types of CS phases in the Pb−Sr−Fe(Mn)−O diagram and shows that the stabilization of the six-sided tunnels requires a higher A/B cationic ratio. A description of these phases is proposed through simple structural building units (SBU), based on chains of octahedra bordered by two pyramids. The (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 CS compound exhibits a strong antiferromagnetic and insulating behavior, similar to the Fe-2201 and terrace ferrites but differs by the presence of a hysteresis, with a small coercive field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000274929000025 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:81800 Serial 1593  
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y. pdf  doi
openurl 
  Title (down) In-situ TEM study of the Ni5Al3 to B2 + L12 decomposition in Ni65Al35 Type A1 Journal article
  Year 1995 Publication Materials letters Abbreviated Journal Mater Lett  
  Volume 23 Issue Pages 105-111  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Homogenised and quenched Ni65Al35 samples were heated and studied in situ in a CM20 electron microscope up to 900 degrees C. The Ni5Al3 phase first forming around 550 degrees C in the quenched L1(0) microtwinned martensite starts to decompose around 800 degrees C yielding B2 precipitates in a twinned L1(2) matrix. The latter twinning is a remainder of the microtwinning in the original room temperature martensite. Also the crystallographic relations between precipitates and matrix can be traced back to the original formation of twinned martensite plates within the austenite. Some aspects of the dynamics of the process are discussed on the basis of snap shots and video recordings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995QW53500020 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.489 Times cited 5 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13166 Serial 1585  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Adamowski, J. url  doi
openurl 
  Title (down) In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 235335,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000226112100114 Publication Date 2004-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69400 Serial 1574  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. doi  openurl
  Title (down) In situ transmission electron microscopy study of the silicidation process in Co thin films on patterned (001) Si substrates Type A1 Journal article
  Year 2001 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 16 Issue 3 Pages 701-708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The results of an in situ transmission electron microscopy study of the formation of Co-silicides on patterned (001) Si substrates are discussed. It is shown that the results of the in situ heating experiments agreed very well with the data based on standard rapid thermal annealing experiments. Fast heating rates resulted in better definition of the silicide lines. Also, better lines were obtained for samples that received already a low-temperature ex situ anneal. A Ti cap layer gave rise to a higher degree of epitaxy in the CoSi2 silicide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000167407200011 Publication Date 2008-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.673 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.673; 2001 IF: 1.539  
  Call Number UA @ lucian @ c:irua:103926 Serial 1588  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D. pdf  doi
openurl 
  Title (down) In situ transmission electron microscopy of stress-induced martensite with focus on martensite twinning Type A1 Journal article
  Year 2008 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 481 Issue Si Pages 420-425  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000255716100087 Publication Date 2007-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.094; 2008 IF: 1.806  
  Call Number UA @ lucian @ c:irua:69139 Serial 1586  
Permanent link to this record
 

 
Author Kashiwar, A.; Hahn, H.; Kubel, C. url  doi
openurl 
  Title (down) In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 2 Pages 432  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000622951500001 Publication Date 2021-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:176770 Serial 6729  
Permanent link to this record
 

 
Author Geuchies, J.J.; van Overbeek, C.; Evers, W.H.; Goris, B.; de Backer, A.; Gantapara, A.P.; Rabouw, F.T.; Hilhorst, J.; Peters, J.L.; Konovalov, O.; Petukhov, A.V.; Dijkstra, M.; Siebbeles, L.D.A.; van Aert, S.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title (down) In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 1248-1254  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.  
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389104400011 Publication Date 2016-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 182 Open Access OpenAccess  
  Notes This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 39.737  
  Call Number EMAT @ emat @ c:irua:136165 Serial 4289  
Permanent link to this record
 

 
Author Verstraelen, H.; de Baere, K.; Schillemans, W.; Lemmens, L.; Dewil, R.; Lenaerts, S.; Potters, G. openurl 
  Title (down) In situ study of ballast tank corrosion on ships: part 2 Type A1 Journal article
  Year 2009 Publication Materials performance Abbreviated Journal Mater Performance  
  Volume 48 Issue 11 Pages 54-57  
  Keywords A1 Journal article; Engineering sciences. Technology; Theory of quantum systems and complex systems; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A study was undertaken to determine causes and effects of corrosion processes in ballast tanks. Part 1 of this article (October 2009 MP) described the data collection. Part 2 describes the development of a corrosion index (CI) derived from the general International Association of Classification Societies corrosion assessment methods. The CI can be used in situ to assess ballast tank corrosion. An average timeline for-corrosion of tanks is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-1492 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.149 Times cited Open Access  
  Notes Approved Most recent IF: 0.149; 2009 IF: 0.124  
  Call Number UA @ admin @ c:irua:79761 Serial 5964  
Permanent link to this record
 

 
Author Verstraelen, H.; de Baere, K.; Schillemans, W.; Lemmens, L.; Dewil, R.; Lenaerts, S.; Potters, G. pdf  openurl
  Title (down) In situ study of ballast tank corrosion on ships: part 1 Type A1 Journal article
  Year 2009 Publication Materials performance Abbreviated Journal Mater Performance  
  Volume 48 Issue 10 Pages 48-51  
  Keywords A1 Journal article; Engineering sciences. Technology; Theory of quantum systems and complex systems; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-1492 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 0.149 Times cited Open Access  
  Notes Approved Most recent IF: 0.149; 2009 IF: 0.124  
  Call Number UA @ admin @ c:irua:78547 Serial 5963  
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title (down) In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
  Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168639900001 Publication Date 2024-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.8 Times cited Open Access OpenAccess  
  Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA  
  Call Number EMAT @ emat @c:irua:204363 Serial 8995  
Permanent link to this record
 

 
Author Fedina, L.; Lebedev, O.I.; Van Tendeloo, G.; van Landuyt, J.; Mironov, O.A.; Parker, E.H.C. url  doi
openurl 
  Title (down) In situ HREM irradiation study of point-defect clustering in MBE-grown strained Si1-xGex/(001)Si structures Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue 15 Pages 10336-10345  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a detailed analysis of the point-defect clustering in strained Si/Si(1-x)Ge(x)/(001)Si structures, including the interaction of the point defects with the strained interfaces and the sample surface during 400 kV electron irradiation at room temperature. Point-defect cluster formation is very sensitive to the type and magnitude of the strain in the Si and Si(1-x)Ge(x) layers. A small compressive strain (-0.3%) in the SiGe alloy causes an aggregation of vacancies in the form of metastable [110]-oriented chains. They are located on {113} planes and further recombine with interstitials. Tensile strain in the Si layer causes an aggregation of interstitial atoms in the forms of additional [110] rows which are inserted on {113} planes with [001]-split configurations. The chainlike configurations are characterized by a large outward lattice relaxation for interstitial rows (0.13 +/-0.01 nm) and a very small inward relaxation for vacancy chains (0.02+/-0.01 nm). A compressive strain higher than -0.5% strongly decreases point-defect generation inside the strained SiGe alloy due to the large positive value of the formation volume of a Frenkel pair. This leads to the suppression of point-defect clustering in a strained SiGe alloy so that SiGe relaxes via a diffusion of vacancies from the Si layer, giving rise to an intermixing at the Si/SiGe interface. In material with a 0.9% misfit a strongly increased flow of vacancies from the Si layer to the SiGe layer and an increased biaxial strain in SiGe bath promote the preferential aggregation of vacancies in the (001) plane, which relaxes to form intrinsic 60 degrees dislocation loops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000086606200082 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Conference Name: Microsc. Semicond. Mater. Conf. Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:103456 Serial 1577  
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q. pdf  doi
openurl 
  Title (down) In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
  Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2102161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000751742300001 Publication Date 2022-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:186421 Serial 6960  
Permanent link to this record
 

 
Author Hilber, W.; Helm, M.; Peeters, F.M.; Alavi, K.; Pathak, R.N. url  doi
openurl 
  Title (down) Impurity band and magnetic-field-induced metal-insulator transition in a doped GaAs/AlxGa1-xAs superlattice Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 53 Issue 11 Pages 6919-6922  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A combination of infrared spectroscopy and magnetotransport is used to investigate the impurity band and the magnetic-field-induced metal-insulator transition in n-type GaAs/AlxGa1-xAs superlattices. The dropping of the Fermi level from the conduction band into the impurity band upon increasing magnetic field is observed in a sample doped to n=4n(c), where n(c) is the critical density according to the Mott criterion. The metal-insulator transition takes place while the Fermi level is in the impurity band, with no qualitative change from the metallic to the insulating side. Due to the anisotropy of the superlattice band structure, the metal-insulator transition is shifted to higher magnetic field, when the magnetic field is tilted away from the growth axis towards the layer planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996UC74000018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99676 Serial 1571  
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title (down) Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 29 Pages 17650-17665  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477785000003 Publication Date 2019-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289  
Permanent link to this record
 

 
Author Van den Hoek, J.; Daems, N.; Arnouts, S.; Hoekx, S.; Bals, S.; Breugelmans, T. pdf  doi
openurl 
  Title (down) Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 6 Pages 6931-6947  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001158812100001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.5 Times cited Open Access Not_Open_Access: Available from 21.06.2024  
  Notes Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:202309 Serial 9045  
Permanent link to this record
 

 
Author Savchenko, D.V.; Serdan, A.A.; Morozov, V.A.; Van Tendeloo, G.; Ionov, S.G. pdf  doi
openurl 
  Title (down) Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation Type A1 Journal article
  Year 2012 Publication New carbon materials Abbreviated Journal  
  Volume 27 Issue 1 Pages 12-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Flexible graphite foil produced by rolling expanded graphite impregnated with boron oxide was analyzed by laser mass spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermogravimetry. It was shown that the modification of the graphite foil by boron oxide increases the onset temperature of oxidation by ∼ 150 °C. Impregnation of less than 2 mass% boron oxide also increased the tensile strength of the materials. The observed improvement was attributed to the blocking of active sites by boron oxide, which is probably chemically bonded to the edges of graphene sheets in expanded graphite particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304742100002 Publication Date 2012-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96958 Serial 1569  
Permanent link to this record
 

 
Author Pinera, I.; Cruz, C.M.; Leyva, A.; Abreu, Y.; Cabal, A.E.; van Espen, P.; Van Remortel, N. doi  openurl
  Title (down) Improved calculation of displacements per atom cross section in solids by gamma and electron irradiation Type A1 Journal article
  Year 2014 Publication Interactions With Materials And Atoms Abbreviated Journal  
  Volume 339 Issue Pages 1-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Particle Physics Group; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10-90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5-50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20-70%) with respect to the previous studies. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343785500001 Publication Date 2014-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:121161 Serial 8069  
Permanent link to this record
 

 
Author Coghe, F.; Tirry, W.; Rabet, L.; Schryvers, D.; Van Houtte, P. pdf  doi
openurl 
  Title (down) Importance of twinning in static and dynamic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure Type A1 Journal article
  Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 537 Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Whereas deformation twinning is known to be an important deformation mechanism for hexagonal materials like magnesium and pure titanium, so far almost no literature exists on the twinning behaviour of the Ti-6Al-4V alloy. In this work it was shown that the activation of twinning as a deformation mechanism could have a pronounced effect on the mechanical behaviour of the Ti-6Al-4V alloy. This effect is even more pronounced under dynamic loading conditions. Transmission electron microscopy showed that only the {1 0 1 2}{1 0 1 1} tensile twin system was activated under certain loading conditions. Light-optical microscopy and electron backscatter diffraction data were afterwards used to experimentally determine the twin fractions. The importance of twinning for the texture evolution was also studied. It was shown that even small twin fractions can lead to distinct texture features, especially due to the discrete reorientation of the c-axes. The experimental results were compared to simulated results that were obtained with a viscoplastic self-consistent crystal plasticity code, after experimental validation that twinning can be reliably modelled as a unidirectional slip system. Although good agreement was obtained for the experimental and simulated stress-strain curves, the simulated results concerning twinning correlated well only on a qualitative basis as the simulated twin fractions were systematically higher than the experimental fractions. This seems to strengthen the hypothesis made by other research groups that complete grains might reorient by twinning. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000301473300001 Publication Date 2011-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.094; 2012 IF: 2.108  
  Call Number UA @ lucian @ c:irua:97818 Serial 1565  
Permanent link to this record
 

 
Author de Baere, K.; Verstraelen, H.; Dewil, R.; Lemmens, L.; Lenaerts, S.; Nkunzimana, T.; Potters, G. openurl 
  Title (down) Impact of tank construction on corrosion of ship ballast tanks Type A1 Journal article
  Year 2010 Publication Materials performance Abbreviated Journal Mater Performance  
  Volume 49 Issue 5 Pages 48-54  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-1492 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.149 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 0.149; 2010 IF: 0.055  
  Call Number UA @ admin @ c:irua:82385 Serial 5961  
Permanent link to this record
 

 
Author Li, Z.; Covaci, L.; Berciu, M.; Baillie, D.; Marsiglio, F. url  doi
openurl 
  Title (down) Impact of spin-orbit coupling on the Holstein polaron Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 19 Pages 195104-195104,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin-orbit interaction. Our results corroborate previous work performed with the momentum average approximation and with weak-coupling perturbation theory. We find that spin-orbit coupling increases the effective mass in the regime with weak electron-phonon coupling, and decreases the effective mass in the regimes of intermediate and strong electron-phonon coupling. Analytical strong-coupling perturbation theory results confirm our numerical results in the small-polaron regime. A large amount of spin-orbit coupling can lead to a significant lowering of the polaron effective mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000290162500001 Publication Date 2011-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by Alberta Ingenuity, by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89718 Serial 1561  
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R. url  doi
openurl 
  Title (down) Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
  Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 206 Issue Pages 110300  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519653800038 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited 5 Open Access OpenAccess  
  Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784  
  Call Number UA @ admin @ c:irua:168668 Serial 6544  
Permanent link to this record
 

 
Author Li, Z.; Covaci, L.; Marsiglio, F. url  doi
openurl 
  Title (down) Impact of Dresselhaus versus Rashba spin-orbit coupling on the Holstein polaron Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205112-205112,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We utilize an exact variational numerical procedure to calculate the ground-state properties of a polaron in the presence of Rashba and linear Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit coupling approaches the Rashba spin-orbit coupling, the Van Hove singularity in the density of states will be shifted away from the bottom of the band and finally disappear when the two spin-orbit couplings are tuned to be equal. The effective mass will be suppressed; the trend will become more significant for low phonon frequency. The presence of two dominant spin-orbit couplings will make it possible to tune the effective mass with more varied observables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303794900003 Publication Date 2012-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), by ICORE (Alberta), by the Flemish Science Foundation (FWO-Vl), and by the Canadian Institute for Advanced Research (CIfAR). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99121 Serial 1558  
Permanent link to this record
 

 
Author Wiktor, C.; Turner, S.; Zacher, D.; Fischer, R.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 162 Issue Pages 131-135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract First results on the imaging of intact metalorganic framework (MOF) pores in MOF-5 nanocrystals by aberration corrected transmission electron microscopy (TEM) under liquid nitrogen conditions are presented. The applied technique is certainly transferable to other MOF systems, permitting detailed studies of MOF interfaces, MOFnanoparticle interaction and MOF thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308284800018 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 30 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:100467 Serial 1554  
Permanent link to this record
 

 
Author Yuan, H.; Debroye, E.; Bladt, E.; Lu, G.; Keshavarz, M.; Janssen, K.P.F.; Roeffaers, M.B.J.; Bals, S.; Sargent, E.H.; Hofkens, J. pdf  url
doi  openurl
  Title (down) Imaging heterogeneously distributed photo-active traps in perovskite single crystals Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 30 Pages 1705494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Delta-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Delta-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 x 10(14) and 8 x 10(13) cm(-3) for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is conduded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000428793600009 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, ZW1509 GOH6316N, postdoctoral fellowships to H.Y., E.D., and K.P.F.J., doctoral fellowship to E.B.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196), and the ERC project LIGHT (GA-307523). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). G.L. acknowledges Key University Science Research Project of Jiangsu Province (No. 17KJA150005). E.H.S. acknowledges support from the Ontario Research Fund – Research Excellence Program. ; ecassara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:150826UA @ admin @ c:irua:150826 Serial 4970  
Permanent link to this record
 

 
Author Zhao, Z.X.; Ma, X.; Cao, S.; Li, Y.Y.; Zeng, C.Y.; Wang, D.X.; Yao, X.; Deng, Z.J.; Zhang, X.P. pdf  doi
openurl 
  Title (down) Identification of nano-width variants in a fully monoclinic martensitic Ni50Ti50 alloy by scanning electron microscope-based transmission Kikuchi diffraction and improved groupoid structure approach Type A1 Journal article
  Year 2020 Publication Materials Letters Abbreviated Journal Mater Lett  
  Volume 281 Issue Pages 128624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-width martensite plates in a fully martensitic Ni50Ti50 alloy are indexed successfully by using the off-axis transmission Kikuchi diffraction in scanning electron microscope (i.e., SEM-based TKD). The data obtained by SEM-TKD are effectively interpreted using an improved approach based on the framework of the theoretical groupoid structure method, where the equivalent variants transformed from the monoclinic variants are introduced to calculate all theoretical axis/angle pairs of rotation, and to formulate a complete list of source martensite to target martensite pairs. Consequently, B19' monoclinic martensite variants in NiTi alloys are identified unambiguously, by using numerical comparison between the experimental and theoretical rotation components, without the reference of retained parent phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581134200033 Publication Date 2020-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grant Nos. 51571092 and 51401081, and Guangdong Provincial Natural Science Foundation under Grant Nos. 2018B0303110012 and 2017A030313323. ; Approved Most recent IF: 3; 2020 IF: 2.572  
  Call Number UA @ admin @ c:irua:173509 Serial 6540  
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title (down) Hysteresis in mesoscopic superconducting disks: the Bean-Livingston barrier Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 6039-6042  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000079254300016 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24156 Serial 1545  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: