|   | 
Details
   web
Records
Author Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L.M.; Vuković, L.; Král, P.; Bals, S.; Klajn, R.
Title (up) Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 358 Issue 358 Pages 514-518
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here,we show that non–close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413757500043 Publication Date 2017-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 113 Open Access OpenAccess
Notes This work was supported by the European Research Council (grants 336080 CONFINEDCHEM to R.K. and 335078 COLOURATOM to S.B.), the Rothschild Caesarea Foundation (R.K.), the NSF (Division of Materials Research, grant 1506886) (P.K.), the European Commission (grant EUSMI 731019 to L.M.L.-M. and S.B.), and the startup funding from the University of Texas at El Paso (L.V.). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013- 46101-R). T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. The computer support was provided by the Texas Advanced Computing Center. All data are reported in the main text and supplementary materials. ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205
Call Number EMAT @ emat @c:irua:147242UA @ admin @ c:irua:147242 Serial 4770
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title (up) Tunable quantum dots in bilayer graphene Type A1 Journal article
Year 2007 Publication Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue 4 Pages 946-949
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000245600500017 Publication Date 2007-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 167 Open Access
Notes Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:64118 Serial 3745
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M.
Title (up) Tunable skewed edges in puckered structures Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 245413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377802700010 Publication Date 2016-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134599 Serial 4268
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V.
Title (up) Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 10 Pages 104422
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428238600006 Publication Date 2018-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915
Permanent link to this record
 

 
Author Shakouri, K.; Simchi, H.; Esmaeilzadeh, M.; Mazidabadi, H.; Peeters, F.M.
Title (up) Tunable spin and charge transport in silicene nanoribbons Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 035413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject to an external electric field E-z. The effect of an exchange field M-z is also taken into account and its consequences on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion symmetry in the presence of intrinsic spin-orbit interaction in combination of E-z and M-z fields. Our quantum transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely spin-polarized for low-energy carriers even when a few edge vacancies are present.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357806900004 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 70 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127099 Serial 3746
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y.
Title (up) Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume 12 Issue 11 Pages 1045-+
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414531800011 Publication Date 2017-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 65 Open Access
Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986
Call Number UA @ lucian @ c:irua:147406 Serial 4902
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
Title (up) Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 9580-9586
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000353930700066 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 73 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:126381 Serial 3747
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title (up) Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M.
Title (up) Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
Year 2021 Publication Carbon Abbreviated Journal Carbon
Volume 171 Issue Pages 551-559
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598371500058 Publication Date 2020-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 11 Open Access OpenAccess
Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337
Call Number UA @ admin @ c:irua:175014 Serial 6700
Permanent link to this record
 

 
Author Chemchuen, S.; Zhou, K.; Kabir, N.A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F.
Title (up) Tuning metal sites of DABCO MOF for gas purification at ambient conditions Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 201 Issue 201 Pages 277-285
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) have emerged as new porous materials for capture and separation of binary gas mixtures. Tuning the metal sites in MOF structures has an impact on properties, which enhance affinity of gas adsorption and selectivity (e.g., surface area, cavity, electric field, etc.). The synthesis and characterization of a M-DABCO series (M = Ni, Co, Cu, Zn) of MOFs are described in this study. The experiments were conducted using multicomponent gas mixtures and the Ideal Adsorbed Solution Theory (IAST) was applied to determine the CO2/CH4 selectivity. Experimental adsorption isotherms were fitted with a model equation to evaluate the characteristic adsorption energy (Isosteric, Qst) of this series. The Ni metal in the M-DABCO series reveals the best performance concerning CO2 adsorption and CH4/CO2 selectivity at ambient conditions based on IAST calculations. The combination of characterizations, calculations and adsorption experiments were used to discuss the metal impact on the adsorption sites in the M-DABCO series at ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345185200030 Publication Date 2014-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 38 Open Access
Notes 246791-Countatoms Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:120473 Serial 3748
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title (up) Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue 3 Pages 032102,1-032102,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000293679000026 Publication Date 2011-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:92473 Serial 3749
Permanent link to this record
 

 
Author Zhang, Z.Z.; Peeters, F.M.
Title (up) Tuning of energy levels and optical properties of graphene quantum dots Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue Pages 235411,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000257289500101 Publication Date 2008-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 228 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69638 Serial 3750
Permanent link to this record
 

 
Author Peeters, F.M.
Title (up) Tuning of energy levels in a superlattice Type P1 Proceeding
Year 1994 Publication Materials Research Society symposium proceedings Abbreviated Journal
Volume 325 Issue Pages 471-480
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Wuhan Editor
Language Wos A1994BA45Z00064 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:9381 Serial 3751
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title (up) Tuning of exciton type by environmental screening Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume 108 Issue 11 Pages 115303-115308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001077758300002 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:200356 Serial 9110
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A.
Title (up) Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 159 Issue 159 Pages 179-188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000388053600021 Publication Date 2016-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 32 Open Access OpenAccess
Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
Title (up) Tuning of the electronic and optical properties of single-layer black phosphorus by strain Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles calculations we showed that the electronic and optical properties of single-layer black phosphorus (BP) depend strongly on the applied strain. Due to the strong anisotropic atomic structure of BP, its electronic conductivity and optical response are sensitive to the magnitude and the orientation of the applied strain. We found that the inclusion of many body effects is essential for the correct description of the electronic properties of monolayer BP; for example, while the electronic gap of strainless BP is found to be 0.90 eV by using semilocal functionals, it becomes 2.31 eV when many-body effects are taken into account within the G(0)W(0) scheme. Applied tensile strain was shown to significantly enhance electron transport along zigzag direction of BP. Furthermore, biaxial strain is able to tune the optical band gap of monolayer BP from 0.38 eV (at -8% strain) to 2.07 eV (at 5.5%). The exciton binding energy is also sensitive to the magnitude of the applied strain. It is found to be 0.40 eV for compressive biaxial strain of -8%, and it becomes 0.83 eV for tensile strain of 4%. Our calculations demonstrate that the optical response of BP can be significantly tuned using strain engineering which appears as a promising way to design novel photovoltaic devices that capture a broad range of solar spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345642000015 Publication Date 2014-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 219 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122203 Serial 3752
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title (up) Tuning of the optical properties of (11k) grown InAs quantum dots by the capping layer Type A1 Journal article
Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J
Volume 39 Issue 3-4 Pages 359-361
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000255600600013 Publication Date 2007-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.163 Times cited Open Access
Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
Call Number UA @ lucian @ c:irua:68849 Serial 3753
Permanent link to this record
 

 
Author Wang, H.; Cuppens, J.; Biermans, E.; Bals, S.; Fernandez-Ballester, L.; Kvashnina, K.O.; Bras, W.; van Bael, M.J.; Temst, K.; Vantomme, A.
Title (up) Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 3 Pages 035301-035301,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000299308400008 Publication Date 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 5 Open Access
Notes Fwo; Iap Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:94208 Serial 3754
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J.
Title (up) Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 24 Pages 245324-245324,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292254000005 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90923 Serial 3755
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title (up) Tuning of the two electron states in quantum rings through the spin-orbit interaction Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 4 Pages 1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [11̅ 0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280234100006 Publication Date 2010-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by NSFC under Grants No. 60525405 and No. 10874175 and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84087 Serial 3756
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L.
Title (up) Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
Year 2017 Publication Science Abbreviated Journal Science
Volume 357 Issue 6347 Pages 187-190
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000405391700042 Publication Date 2017-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 87 Open Access
Notes ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205
Call Number UA @ lucian @ c:irua:144833 Serial 4730
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M.
Title (up) Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume 2 Issue 9 Pages 1246-1250
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571390700022 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:171980 Serial 6439
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Ghergherehchi, M.; Peeters, F.M.
Title (up) Tuning the bandgap and introducing magnetism into monolayer BC3 by strain/defect engineering and adatom/molecule adsorption Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 126 Issue 14 Pages 144304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching -8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in -8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0-1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503995300019 Publication Date 2019-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 48 Open Access
Notes Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:165160 Serial 6328
Permanent link to this record
 

 
Author Fedotov, S.S.; Aksyonov, D.A.; Samarin, A.S.; Karakulina, O.M.; Hadermann, J.; Stevenson, K.J.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E., V
Title (up) Tuning the crystal structure of A2CoPO4F(A=Li,Na) fluoride-phosphates : a new layered polymorph of LiNaCoPO4F Type A1 Journal article
Year 2019 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume 2019 Issue 2019 Pages 4365-4372
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Co-containing fluoride-phosphates are of interest in sense of delivering high electrode potentials and attractive specific energy values as positive electrode materials for rechargeable batteries. In this paper we report on a new Co-based fluoride-phosphate, LiNaCoPO4F, with a layered structure (2D), which was Rietveld-refined based on X-ray powder diffraction data [P2(1)/c, a = 6.83881(4) angstrom, b = 11.23323(5) angstrom, c = 5.07654(2) angstrom, beta = 90.3517(5) degrees, V = 389.982(3) angstrom(3)] and validated by electron diffraction and high-resolution scanning transmission electron microscopy. The differential scanning calorimetry measurements revealed that 2D-LiNaCoPO4F forms in a narrow temperature range of 520-530 degrees C and irreversibly converts to the known 3D-LiNaCoPO4F modification (Pnma) above 530 degrees C. The non-carbon-coated 2D-LiNaCoPO4F shows reversible electrochemical activity in Li-ion cell in the potential range of 3.0-4.9 V vs. Li/Li+ with an average potential of approximate to 4.5 V and in Na-ion cell in the range of 3.0-4.5 V vs. Na/Na+ exhibiting a plateau profile centered around 4.2 V, in agreement with the calculated potentials by density functional theory. The energy barriers for both Li+ and Na+ migration in 2D-LiNaCoPO4F amount to 0.15 eV along the [001] direction rendering 2D-LiNaCoPO4F as a viable electrode material for high-power Li- and Na-ion rechargeable batteries. The discovery and stabilization of the 2D-LiNaCoPO4F polymorph indicates that temperature influence on the synthesis of A(2)MPO(4)F fluoride-phosphates needs more careful examination with perspective to unveil new structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484135500001 Publication Date 2019-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited Open Access
Notes ; This work is supported by the Russian Science Foundation (grant 17-73-30006). The authors greatly thank Dr. D. Rupasov for TG-DSC experiments, B. D. Shmykov and A. I. Manoilov for assistance with sample preparation, the Skoltech Center for Energy Science and Technology and the Moscow State University Program of Development up to 2020. J. Hadermann and O. M. Karakulina acknowledge support from the FWO under grant G040116N. ; Approved Most recent IF: 2.444
Call Number UA @ admin @ c:irua:162857 Serial 5403
Permanent link to this record
 

 
Author Bafekry, A.; Ghergherehchi, M.; Shayesteh, S.F.
Title (up) Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 20 Pages 10552-10566
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476561000031 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161945 Serial 5430
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M.
Title (up) Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 15 Pages 155424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000430459400005 Publication Date 2018-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.
Title (up) Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 8 Pages 085417-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515659700007 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 24 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:167760 Serial 6640
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S.
Title (up) Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 114 Issue 5 Pages 6894-6900
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000276562500002 Publication Date 2010-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 54 Open Access
Notes Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:89508 Serial 3757
Permanent link to this record
 

 
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J.
Title (up) Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001092787000001 Publication Date 2023-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access OpenAccess
Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:200590 Serial 8963
Permanent link to this record
 

 
Author Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G.
Title (up) Tuning the intrinsic anisotropy with disorder in the CaKFE₄As₄ superconductor Type A1 Journal article
Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl
Volume 13 Issue 6 Pages 064046-64049
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on the anisotropy of the London penetration depth of CaKFe4As4, discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe4As4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T-c approximate to 35 K. The London penetration depth lambda(L) is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions lambda(L,ab) and lambda(L,c) and obtain the anisotropy parameter gamma(lambda) = lambda(L,c)/lambda(L,ab). The gamma(lambda) (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of gamma(lambda) (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as gamma(lambda) on application-related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe4As4 in the production of wires.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540915800003 Publication Date 2020-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 4 Open Access
Notes ; This work was partially supported by the Italian Ministry of Education, University and Research (Project PRIN “HIBiSCUS,” Grant No. 201785KWLE). J.B. acknowledges the support of a postdoctoral fellowship of the Research Foundation-Flanders (FWO). The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Work done at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 702.a03.21.0005). ; Approved Most recent IF: 4.6; 2020 IF: 4.808
Call Number UA @ admin @ c:irua:170178 Serial 6641
Permanent link to this record