|   | 
Details
   web
Records
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M.
Title (up) Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 17 Pages 175701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000429329500001 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 11 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983
Permanent link to this record
 

 
Author Cukaric, N.A.; Partoens, B.; Tadic, M.Z.; Arsoski, V.V.; Peeters, F.M.
Title (up) The 30-band k . p theory of valley splitting in silicon thin layers Type A1 Journal article
Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 28 Issue 28 Pages 195303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k . p theory. The system composed of a few nm thick Si layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K-0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000374394700009 Publication Date 2016-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.649 Times cited Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:133610 Serial 4261
Permanent link to this record
 

 
Author Bernaerts, D.; op de Beeck, M.; Amelinckx, S.; van Landuyt, J.; Van Tendeloo, G.
Title (up) The chirality of carbon nanotubules determined by dark-field electron microscopy Type A1 Journal article
Year 1996 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 74 Issue 3 Pages 723-740
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multishell carbon nanotubules are studied by means of diffraction contrast dark field images. This results in an electron microscopy method for the determination of the sign of the chiral angles in carbon nanotubes. The method is justified by a reasoning either in direct space or in diffraction space. We also investigate a carbon nanotubule exhibiting a bend and we confront the observations with the heptagon-pentagon pair model.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1996VG17300010 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 20 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:15456 Serial 359
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A.
Title (up) The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 18 Issue 48 Pages 10803-10815
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000242650600008 Publication Date 2006-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved Most recent IF: 2.649; 2006 IF: 2.038
Call Number UA @ lucian @ c:irua:60468 Serial 816
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title (up) The effect of temperature on the structural, electronic and optical properties of sp3-rich amorphous carbon Type A1 Journal article
Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 20 Issue 3 Pages 035216,1-6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of temperature on the structural, electronic and optical properties of dense tetrahedral amorphous carbon made of similar to 80% sp(3)-bonded atoms is investigated using a combination of the classical Monte Carlo technique and density functional theory. A structural transformation accompanied by a slight decrease of the sp(3) fraction is evidenced above a temperature of about 600 degrees C. A structural analysis in combination with energy-loss near-edge structure calculations shows that beyond this temperature, the sp(2)-bonded C sites arrange themselves so as to enhance the conjugation of the p electrons. The Tauc optical band gap deduced from the calculated dielectric function shows major changes beyond this temperature in accordance with experimental results. Energy-loss near-edge structure and band gap calculations additionally reveal a massive destabilization of the of sp(3) bonding phase in favour of sp(2) bonding at a temperature of about 1300 degrees C which agrees very well with the reported value of 1100 degrees C.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000252922900026 Publication Date 2007-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 11 Open Access
Notes Approved Most recent IF: 2.649; 2008 IF: 1.900
Call Number UA @ lucian @ c:irua:67461 Serial 840
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.; Costa Filho, R.N.
Title (up) The electronic properties of graphene and graphene ribbons under simple shear strain Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 37 Pages 375301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A tight-binding model is used to study the energy band of graphene and graphene ribbon under simple shear strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation where a simple shear strain is applied in the x-direction keeping the atomic distances in the y-direction unchanged. Such modification in the lattice gives an energy band that differs in several aspects from the one without any shear and with pure shear. The changes in the spectrum depend on the line displacement of the ribbon, and also on the modified hopping parameter. It is also shown that this simple shear strain tunes the electronic properties of both graphene and graphene ribbon, opening and closing energy gaps for different displacements of the system. The modified density of states is also shown.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000308202700011 Publication Date 2012-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 15 Open Access
Notes ; This work was supported by CNPq (RNCF), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:101838 Serial 1000
Permanent link to this record
 

 
Author Li, X.Q.; Peeters, F.M.; Geim, A.K.
Title (up) The Hall effect of an inhomogeneous magnetic field in mesoscopic structures Type A1 Journal article
Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 9 Issue Pages 8065-8073
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1997XY64300012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 8 Open Access
Notes Approved Most recent IF: 2.649; 1997 IF: 1.479
Call Number UA @ lucian @ c:irua:19290 Serial 1401
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T.
Title (up) The hot electron distribution of two-dimensional electrons in a polar semiconductor at zero temperature Type A3 Journal article
Year 1991 Publication Journal of physics: C: condensed matter Abbreviated Journal
Volume 3 Issue Pages 1783-1791
Keywords A3 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1991FE35700009 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:948 Serial 1490
Permanent link to this record
 

 
Author Liu, S.; Cool, P.; Collart, O.; van der Voort, P.; Vansant, E.F.; Lebedev, O.I.; Van Tendeloo, G.; Jiang, M.
Title (up) The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent Type A1 Journal article
Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B
Volume 107 Issue Pages 10405-10411
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000185401900013 Publication Date 2003-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.177 Times cited 134 Open Access
Notes Approved Most recent IF: 3.177; 2003 IF: 3.679
Call Number UA @ lucian @ c:irua:46264 Serial 1643
Permanent link to this record
 

 
Author Bussmann-Holder, A.; Michel, K.H.
Title (up) The isotope effect in hydrogen-bonded systems Type A1 Journal article
Year 1998 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 1st International Conference on New Theories, Discoveries, and, Applications of Superconductors and Related Materials (New3SC-1), FEB 19-24, 19 Abbreviated Journal Int J Mod Phys B
Volume 12 Issue 29-31 Pages 3406-3408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The giant isotope effect on the ferro- and antiferroelectric transition temperature upon deuteration of hydrogen-bonded systems is well known experimentally since various decades. Yet, theoretically only recently a microscopic understanding of this effect has been achieved which, specifically, took into account the geometry of the O ... H ... O bond. The implications of this modeling are multiple as numerous hydrogen-bonded organic systems show the same effects as ferro- and antiferroelectrics, i.e., cooperative proton tunneling at a well-defined temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000079114500104 Publication Date 2003-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record
Impact Factor 0.736 Times cited Open Access
Notes Approved Most recent IF: 0.736; 1998 IF: 0.987
Call Number UA @ lucian @ c:irua:102920 Serial 3589
Permanent link to this record
 

 
Author Xu, W.; Vasilopoulos, P.; Das, M.P.; Peeters, F.M.
Title (up) The low-temperature self-consistent g factor for heterostructures in strong magnetic fields Type A1 Journal article
Year 1995 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 7 Issue Pages 4419-4432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995RC23600011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.346 Times cited 20 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12196 Serial 1853
Permanent link to this record
 

 
Author Zhang, H.; Salje, E.K.H.; Schryvers, D.; Bartova, B.
Title (up) The martensitic phase transition in Ni-Al: experimental observation of excess entropy and heterogeneous spontaneous strain Type A1 Journal article
Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 20 Issue 5 Pages 055220,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000252923400023 Publication Date 2008-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Multimat (MRTN-CT-2004-505226) Approved Most recent IF: 2.649; 2008 IF: 1.900
Call Number UA @ lucian @ c:irua:67710 Serial 1948
Permanent link to this record
 

 
Author Lei, C.H.; Van Tendeloo, G.; Amelinckx, S.
Title (up) The microstructure of ordered Ba(Mg1/3Ta2/3)O3 Type A1 Journal article
Year 2002 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 82 Issue 2 Pages 349-367
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000173420400009 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Iuap 4-10 Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54753 Serial 2071
Permanent link to this record
 

 
Author Xu, Y.; Jia, D.-J.; Chen, Z.; Gao, Y.; Li, F.-S.
Title (up) The mode-deviation effect of trapped spinor bose gas beyond mean field theory Type A1 Journal article
Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics Abbreviated Journal Int J Mod Phys B
Volume 18 Issue 9 Pages 1339-1349
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The deviation effect of spinor mode from the single-mode for a spin-1 Bose gas of trapped atoms is studied beyond the mean field theory. Based on the effective Hamiltonian with nondegenerated level of the collective spin states, the splitting level of the system energy due to the deviation effect has been calculated. For the large condensates of (87)Rb and (23)Na with atom number N > 10(5), the splitting fraction of the energy, arising from the magnetization exhibited by the trapped Bose gas, is found to have a typical order of (10(-4) similar to 10(-8)), decreasing as N(-2) for (87)Rb and increasing as -N(-2) for 23 Na, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000222342400008 Publication Date 2004-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2004 IF: 0.361
Call Number UA @ lucian @ c:irua:94805 Serial 2096
Permanent link to this record
 

 
Author Mukhopadhyay, S.; Peeters, F.M.
Title (up) The pinning effect in a parabolic quantum dot Type A1 Journal article
Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 14 Issue 34 Pages 8005-8010
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using improved Wigner-Brillouin perturbation theory we study resonant electron-phonon interaction in a semiconductor quantum dot. We predict pinning of the excited energy levels to the ground state level plus one optical phonon as a function of the strength of the confinement potential. This effect should be observable through optical spectroscopic measurements.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000178051800022 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes Approved Most recent IF: 2.649; 2002 IF: 1.775
Call Number UA @ lucian @ c:irua:102824 Serial 3591
Permanent link to this record
 

 
Author da Costa, W.B.; Peeters, F.M.
Title (up) The polaron-bipolaron transition for acoustical three-dimensional polarons Type A1 Journal article
Year 1996 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 8 Issue Pages 2173-2183
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1996UD88400009 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.346 Times cited 10 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:15799 Serial 2661
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title (up) The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 22 Issue 12 Pages 125505,1-125505,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000275496600010 Publication Date 2010-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 53 Open Access
Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332
Call Number UA @ lucian @ c:irua:81531 Serial 2802
Permanent link to this record
 

 
Author Partoens, B.; Matulis, A.; Peeters, F.M.
Title (up) The two electron artificial molecule Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue Pages 1617-1620
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000078291000018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 34 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24160 Serial 3779
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; van Haesendonck, C.
Title (up) The work function of few-layer graphene Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal
Volume 29 Issue 3 Pages 035003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A theoretical and experimental study of the work function of few-layer graphene is reported. The influence of the number of layers on the work function is investigated in the presence of a substrate, a molecular dipole layer, and combinations of the two. The work function of few-layer graphene is almost independent of the number of layers with only a difference between monolayer and multilayer graphene of about 60 meV. In the presence of a charge-donating substrate the charge distribution is found to decay exponentially away from the substrate and this is directly reflected in the work function of few-layer graphene. A dipole layer changes the work function only when placed in between the substrate and few-layer graphene through a change of the charge transfer between the two.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425250600002 Publication Date 2016-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 61 Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:164938 Serial 8760
Permanent link to this record
 

 
Author Mlinar, V.; Schliwa, A.; Bimberg, D.; Peeters, F.M.
Title (up) Theoretical study of electronic and optical properties of inverted GaAs/AlxGa1-xAs quantum dots with smoothed interfaces in an external magnetic field Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue Pages 205308,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000246890900065 Publication Date 2007-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69652 Serial 3610
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M.
Title (up) Theory of anharmonic phonons in two-dimensional crystals Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 134302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Anharmonic effects in an atomic monolayer thin crystal with honeycomb lattice structure are investigated by analytical and numerical lattice dynamical methods. Starting from a semiempirical model for anharmonic couplings of third and fourth orders, we study the in-plane and out-of-plane (flexural) mode components of the generalized wave vector dependent Gruneisen parameters, the thermal tension and the thermal expansion coefficients as a function of temperature and crystal size. From the resonances of the displacement-displacement correlation functions, we obtain the renormalization and decay rate of in-plane and flexural phonons as a function of temperature, wave vector, and crystal size in the classical and in the quantum regime. Quantitative results are presented for graphene. There, we find that the transition temperature T-alpha from negative to positive thermal expansion is lowered with smaller system size. Renormalization of the flexural mode has the opposite effect and leads to values of T-alpha approximate to 300 K for systems of macroscopic size. Extensive numerical analysis throughout the Brillouin zone explores various decay and scattering channels. The relative importance of normal and umklapp processes is investigated. The work is complementary to crystalline membrane theory and computational studies of anharmonic effects in two-dimensional crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000353031000001 Publication Date 2015-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:132512 Serial 4263
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title (up) Theory of rigid-plane phonon modes in layered crystals Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages 094303-094303,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al., Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301646000006 Publication Date 2012-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; The authors are indebted to J. Maultzsch for bringing Ref. 20 to their attention. They thank D. Lamoen, F.M. Peeters, B. Trauzettel, and C. Van Haesendonck for useful discussions. This work has been financially supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97787 Serial 3619
Permanent link to this record
 

 
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M.
Title (up) Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 081408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359860700005 Publication Date 2015-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 124 Open Access
Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127754 Serial 4034
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M.
Title (up) Thermal properties of fluorinated graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 10 Pages 104114-104116
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316933500002 Publication Date 2013-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108495 Serial 3629
Permanent link to this record
 

 
Author Costamagna, S.; Neek-Amal, M.; Los, J.H.; Peeters, F.M.
Title (up) Thermal rippling behavior of graphane Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 4 Pages 041408-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures, we show that hydrogenated graphene is an unrippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a H(q) tending to a constant in the long wavelength limit instead of showing the characteristic scaling law q(4-eta)(eta similar or equal to 0.85) predicted by membrane theory. This unexpected behavior persists up to temperatures of at least 900 K and is a consequence of the fact that in graphane the thermal energy can be accommodated by in-plane bending modes, i.e., modes involving C-C-C bond angles in the buckled carbon layer, instead of leading to significant out-of-plane fluctuations that occur in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306649200002 Publication Date 2012-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; We thank A. Fasolino, A. Dobry, and K. H. Michel for their useful comments. S.C. is supported by the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100840 Serial 3630
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title (up) Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245429-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328686900006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113700 Serial 3635
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M.
Title (up) Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184106-184107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318653800001 Publication Date 2013-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109010 Serial 3638
Permanent link to this record
 

 
Author Lajevardipour, A.; Neek-Amal, M.; Peeters, F.M.
Title (up) Thermomechanical properties of graphene : valence force field model approach Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 17 Pages 175303-175303,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303499700012 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 29 Open Access
Notes ; We acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:99123 Serial 3639
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.
Title (up) Three electrons in laterally coupled quantum dots: tunnel vs electrostatic coupling, ground-state symmetry, and interdot correlations Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 71 Issue Pages 245314,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000230276900069 Publication Date 2005-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69411 Serial 3657
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title (up) Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134509-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390000006 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108469 Serial 3660
Permanent link to this record