|   | 
Details
   web
Records
Author Potapov, P.; Shelyakov, A.; Schryvers, D.
Title (down) On the crystal structure of TiNi-Cu martensite Type A1 Journal article
Year 2001 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 44 Issue Pages 1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000166808100001 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 36 Open Access
Notes Approved Most recent IF: 3.747; 2001 IF: 1.130
Call Number UA @ lucian @ c:irua:48378 Serial 2433
Permanent link to this record
 

 
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H.
Title (down) Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume Issue Pages 116955
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670077800004 Publication Date 2021-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 27 Open Access OpenAccess
Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301
Call Number EMAT @ emat @c:irua:178142 Serial 6761
Permanent link to this record
 

 
Author Potapov, P.L.; Ochin, P.; Pons, J.; Schryvers, D.
Title (down) Nanoscale inhomogeneities in melt-spun Ni-Al Type A1 Journal article
Year 2000 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 48 Issue Pages 3833-3845
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000089632800003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 28 Open Access
Notes Approved Most recent IF: 5.301; 2000 IF: 2.166
Call Number UA @ lucian @ c:irua:48362 Serial 2265
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Ball, J.M.
Title (down) Nano-structures at martensite macrotwin interfaces in Ni65Al35 Type A1 Journal article
Year 2003 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 51 Issue 5 Pages 1421-1436
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35 material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular {110} austenite planes, enclose a final angle larger or smaller than 90degrees. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwinvariants are observed. The most reproducible deformations occur in a region of approximately 5-10 nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000181677700018 Publication Date 2003-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 31 Open Access
Notes Approved Most recent IF: 5.301; 2003 IF: 3.059
Call Number UA @ lucian @ c:irua:48364 Serial 2248
Permanent link to this record
 

 
Author Bartova, B.; Wiese, N.; Schryvers, D.; Chapman, J.N.; Ignacova, S.
Title (down) Microstructure of precipitates and magnetic domain structure in an annealed Co38Ni33Al29 shape memory alloy Type A1 Journal article
Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 56 Issue 16 Pages 4470-4476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructure of a Co38Ni33Al29 ferromagnetic shape memory alloy was determined by conventional transmission electron microscopy (TEM), electron diffraction studies together with advanced microscopy techniques and in situ Lorentz microscopy. Rod-like precipitates, 1060 nm long, of hexagonal close-packed -Co were confirmed to be present by high-resolution TEM. The orientation relationship between the precipitates and B2 matrix is described by the Burgers orientation relationship. The crystal structure of the martensite obtained after cooling is tetragonal L10 with a (111) twinning plane. The magnetic domain structure was determined during an in situ cooling experiment using the Fresnel mode of Lorentz microscopy. While transformation proceeds from B2 austenite to L10 martensite, new domains are nucleated, leading to a decrease in domain width, with the magnetization lying predominantly along a single direction. It was possible to completely describe the relationship between magnetic domains and crystallographic directions in the austenite phase though complications existed for the martensite phase.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000259931300033 Publication Date 2008-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 23 Open Access
Notes Multimat Approved Most recent IF: 5.301; 2008 IF: 3.729
Call Number UA @ lucian @ c:irua:72321 Serial 2072
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D.
Title (down) Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 58 Issue 13 Pages 4503-4515
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000279787100020 Publication Date 2010-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 110 Open Access
Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791
Call Number UA @ lucian @ c:irua:83279 Serial 2062
Permanent link to this record
 

 
Author Bartova, B.; Schryvers, D.; Yang, Z.; Ignacova, S.; Sittner, P.
Title (down) Microstructure and precipitates in as-cast Co38Ni33Al29 shape memory alloy Type A1 Journal article
Year 2007 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 57 Issue 1 Pages 37-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000246632900010 Publication Date 2007-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 22 Open Access
Notes Approved Most recent IF: 3.747; 2007 IF: 2.481
Call Number UA @ lucian @ c:irua:64753 Serial 2059
Permanent link to this record
 

 
Author Rotaru, G.-M.; Tirry, W.; Sittner, P.; van Humbeeck, J.; Schryvers, D.
Title (down) Microstructural study of equiatomic PtTi martensite and the discovery of a new long-period structure Type A1 Journal article
Year 2007 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 55 Issue 13 Pages 4447-4454
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000248436400021 Publication Date 2007-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 7 Open Access
Notes Fwo G.0465.05; Multimat Approved Most recent IF: 5.301; 2007 IF: 3.624
Call Number UA @ lucian @ c:irua:65849 Serial 2047
Permanent link to this record
 

 
Author van der Rest, A.; Idrissi, H.; Henry, F.; Favache, A.; Schryvers, D.; Proost, J.; Raskin, J.-P.; Van Overmeere, Q.; Pardoen, T.
Title (down) Mechanical behavior of ultrathin sputter deposited porous amorphous Al2O3 films Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 125 Issue 125 Pages 27-37
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of porous amorphous Al2O3 thin films is essential to address reliability issues in wear-resistant, optical and electronic coating applications. Testing the mechanical properties of Al2O3 films thinner than 200 nm is challenging, and the link between the mechanical behavior and the microstructure of such films is largely unknown. Herein, we report on the elastic and viscoplastic mechanical properties of amorphous Al2O3 thin films synthesized by reactive magnetron sputtering using a combination of internal stress, nanoindentation, and on-chip uniaxial tensile testing, together with mechanical homogenization models to separate the effect of porosity from intrinsic variations of the response of the sound material. The porosity is made of voids with 2e30 nm diameter. The Young's modulus and hardness of the films decrease by a factor of two when the deposition pressure increases from 1.2 to 8 mTorr. The contribution of porosity was found to be small, and a change in the atomic structure of the amorphous Al2O3 matrix is hypothesized to be the main contributing factor. The activation volume associated to the viscoplastic deformation mechanism is around 100 Å3. Differences in the atomic structure of the films could not be revealed by electron diffraction, pointing to a minute effect of atomic arrangement on the elastic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394201500003 Publication Date 2016-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 5 Open Access OpenAccess
Notes This work has been funded by the Belgian Science Policy through the IAP 7/21 project. The support of the ‘Fonds Belge pour la Recherche dans l’Industrie et l’Agriculture (FRIA)’ for A.v.d.R. is also gratefully acknowledged, as well as the support of FNRS through the grant PDR T.0122.13 “Mecano”. Approved Most recent IF: 5.301
Call Number EMAT @ emat @ c:irua:138990 Serial 4330
Permanent link to this record
 

 
Author Idrissi, H.; Ryelandt, L.; Veron, M.; Schryvers, D.; Jacques, P.J.
Title (down) Is there a relationship between the stacking fault character and the activated mode of plasticity of FeMn-based austenitic steels? Type A1 Journal article
Year 2009 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 60 Issue 11 Pages 941-944
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By changing the testing temperature, an austenitic FeMnAlSi alloy presents either å-martensite transformation or mechanical twinning during straining. In order to understand the nucleation and growth mechanisms involved in both phenomena, defects and particularly stacking faults, were characterized by transmission electron microscopy. It is observed that the character of the stacking faults also changes (from extrinsic to intrinsic) together with the temperature and the activated mode of plasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000265359900005 Publication Date 2009-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 84 Open Access
Notes Iap Approved Most recent IF: 3.747; 2009 IF: 2.949
Call Number UA @ lucian @ c:irua:77276 Serial 1751
Permanent link to this record
 

 
Author Malard, B.; Pilch, J.; Sittner, P.; Delville, R.; Curfs, C.
Title (down) In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1542-1556
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Microstructural changes taking place during the heat treatment of cold-worked NiTi alloy are of key interest in shape memory alloy technology, since they are responsible for setting the austenite shape and functional properties of the heat-treated alloy. In this work, microstructural evolution during non-conventional electropulse heat treatment of thin NiTi filaments was investigated in a unique high-speed in situ synchrotron X-ray diffraction experiment with simultaneous evaluation of the tensile force and electrical resistivity of the treated wire. The in situ results provide direct experimental evidence on the evolution of the internal stress and density of defects during fast heating from 20 °C to ∼700 °C. This evidence is used to characterize a sequence of dynamic recovery and recrystallization processes responsible for the microstructure and superelastic functional property changes during the electropulse treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100023 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 48 Open Access
Notes Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:98372 Serial 1583
Permanent link to this record
 

 
Author Schryvers, D.; Lahjouji, D.E.; Slootmaekers, B.; Potapov, P.L.
Title (down) HREM investigation of martensite precursor effects and stacking sequences in Ni-Mn-Ti alloys Type A1 Journal article
Year 1996 Publication Scripta metallurgica et materialia Abbreviated Journal Scripta Mater
Volume 35 Issue Pages 1235-1241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1996VL92800019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.224 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15427 Serial 1506
Permanent link to this record
 

 
Author Muto, S.; Schryvers, D.; Merk, N.; Tanner, L.E.
Title (down) HREM and ED study of the displacive transformation of the Ni2Al phase in a Ni65Al35 alloy and associated with the martensitic transformation Type A1 Journal article
Year 1993 Publication Acta metallurgica et materialia Abbreviated Journal
Volume 41 Issue Pages 2377-2383
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1993LN82900011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-7151 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 31 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6778 Serial 1497
Permanent link to this record
 

 
Author Ghidelli, M.; Idrissi, H.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title (down) Homogeneous flow and size dependent mechanical behavior in highly ductile Zr 65 Ni 35 metallic glass films Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 131 Issue 131 Pages 246-259
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Motivated by recent studies demonstrating a high strength – high ductility potential of nano-scale metallic glass samples, the mechanical response of freestanding Zr65Ni35 film with sub-micron thickness has been investigated by combining advanced on-chip tensile testing and electron microscopy. Large deformation up to 15% is found for specimen thicknesses below 500 nm with variations depending on specimen size and frame compliance. The deformation is homogenous until fracture, with no evidence of shear banding. The yield stress is doubled when decreasing the specimen cross-section, reaching ~3 GPa for small cross-sections. The fracture strain variation is related to both the stability of the test device and to the specimen size. The study concludes on clear disconnect between the mechanisms controlling the onset of plasticity and the fracture process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402343400023 Publication Date 2017-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 42 Open Access OpenAccess
Notes This work has been funded by the Belgian Science Policy through the IAP 7/21 project. We acknowledge IDS-FunMat for the PhD financial support.We thank the Renatech network and the PTA (Plateforme Technologique Amont) in Grenoble (France) for TFMG deposition facilities. The WINFAB infrastructure at the UCL and the help of R. Vayrette and M. Coulombier for the on-chip tests. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 5.301
Call Number EMAT @ emat @ c:irua:142642 Serial 4562
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title (down) Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation Type A1 Journal article
Year 2015 Publication Acta biomaterialia Abbreviated Journal Acta Biomater
Volume 16 Issue 16 Pages 215-222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.10.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000351978600021 Publication Date 2015-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 54 Open Access
Notes Fwo G043110n Approved Most recent IF: 6.319; 2015 IF: 6.025
Call Number c:irua:124421 Serial 1473
Permanent link to this record
 

 
Author Colla, M.-S.; Wang, B.; Idrissi, H.; Schryvers, D.; Raskin, J.-P.; Pardoen, T.
Title (down) High strength-ductility of thin nanocrystalline palladium films with nanoscale twins : on-chip testing and grain aggregate model Type A1 Journal article
Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 60 Issue 4 Pages 1795-1806
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The mechanical behaviour of thin nanocrystalline palladium films with an ∼30 nm in plane grain size has been characterized on chip under uniaxial tension. The films exhibit a large strain hardening capacity and a significant increase in the strength with decreasing thickness. Transmission electron microscopy has revealed the presence of a moderate density of growth nanotwins interacting with dislocations. A semi-analytical grain aggregate model is proposed to investigate the impact of different contributions to the flow behaviour, involving the effect of twins, of grain size and of the presence of a thin surface layer. This model provides guidelines to optimizing the strength/ductility ratio of the films.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301989500035 Publication Date 2012-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 38 Open Access
Notes Iap Approved Most recent IF: 5.301; 2012 IF: 3.941
Call Number UA @ lucian @ c:irua:94213 Serial 1465
Permanent link to this record
 

 
Author Berg, L.K.; Gjønnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R.
Title (down) GP-zones in Al-Zn-Mg alloys and their role in artificial aging Type A1 Journal article
Year 2001 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 49 Issue Pages 3443-3451
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000171445700006 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 261 Open Access
Notes Approved Most recent IF: 5.301; 2001 IF: 2.658
Call Number UA @ lucian @ c:irua:48363 Serial 1361
Permanent link to this record
 

 
Author Cao, S.; Somsen, C.; Croitoru, M.; Schryvers, D.; Eggeler, G.
Title (down) Focused ion beam/scanning electron microscopy tomography and conventional transmission electron microscopy assessment of Ni4Ti3 morphology in compression-aged Ni-rich Ni-Ti single crystals Type A1 Journal article
Year 2010 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 62 Issue 6 Pages 399-402
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The size, morphology and configuration of Ni4Ti3 precipitates in a single-crystal NiTi alloy have been investigated by two-dimensional transmission electron microscopy-based image analysis and three-dimensional reconstruction from slice-and-view images obtained in a focused ion beam/scanning electron microscopy (FIB/SEM) dual-beam system. Average distances between the precipitates measured along the compression direction correlate well between both techniques, while particle shape and configuration data is best obtained from FIB/SEM. Precipitates form pockets of B2 of 0.54 ìm in the compression direction and 1 ìm perpendicular to the compression direction.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000275072700020 Publication Date 2009-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2010 IF: 2.820
Call Number UA @ lucian @ c:irua:79817 Serial 1246
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E.
Title (down) Electron microscopy study of the formation of Ni5Al3 in a Ni62.5Al37.5 B2 alloy: 2: plate crystallography Type A1 Journal article
Year 1995 Publication Acta metallurgica et materialia Abbreviated Journal
Volume 43 Issue 11 Pages 4057-4065
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1995TA33200015 Publication Date 2003-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-7151; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 11 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13165 Serial 974
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E.
Title (down) Electron microscopy study of the formation of Ni5Al3 in a Ni62.5Al37.5 B2 alloy: 1: precipitation and growth Type A1 Journal article
Year 1995 Publication Acta metallurgica et materialia Abbreviated Journal
Volume 43 Issue 11 Pages 4045-4056
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1995TA33200014 Publication Date 2003-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-7151; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13164 Serial 973
Permanent link to this record
 

 
Author Shi, H.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.
Title (down) Electron microscopy study of Nb-rich nanoprecipitates in NiTiNb and their influence on the martensitic transformation Type A1 Journal article
Year 2012 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 67 Issue 12 Pages 939-942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb-rich nanoprecipitates in the matrix of an annealed commercial NiTiNb alloy are investigated by scanning and transmission electron microscopy, including slice-and-view and chemical analysis. The precipitates have a diameter of around 100 nm, are faceted and have a cube-on-cube relation with the B2 matrix. In situ TEM cooling shows that the martensitic transformation is hampered by the presence of these precipitates. The latter could explain the increase in hysteresis when compared with the binary system.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000311135000005 Publication Date 2012-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 29 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2012 IF: 2.821
Call Number UA @ lucian @ c:irua:101486 Serial 971
Permanent link to this record
 

 
Author Yang, Z.; Tirry, W.; Lamoen, D.; Kulkova, S.; Schryvers, D.
Title (down) Electron energy-loss spectroscopy and first-principles calculation studies on a Ni-Ti shape memory alloy Type A1 Journal article
Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 56 Issue 3 Pages 395-404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000253020900011 Publication Date 2007-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 20 Open Access
Notes Goa; Ec Rtn; Fwo Approved Most recent IF: 5.301; 2008 IF: 3.729
Call Number UA @ lucian @ c:irua:67462 Serial 931
Permanent link to this record
 

 
Author Wang, X.; Kustov, S.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title (down) Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains Type A1 Journal article
Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 82 Issue 82 Pages 224-233
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In order to take advantage of both grain refinement and precipitation hardening effects, nanoscaled Ni4Ti3 precipitates are introduced in a Ti50.8 at.% Ni alloy with micron-sized grains (average grain size of 1.7 μm). Calorimetry, electrical resistance studies and thermomechanical tests were employed to study the transformation behavior and functional properties in relation to the obtained microstructure. A significant suppression of martensite transformation by the obtained microstructure is observed. The thermomechanical tests show that the advantageous properties of both grain refinement and precipitation hardening are combined in the developed materials, resulting in superior shape memory characteristics and stability of pseudoelasticity. It is concluded that introducing nanoscaled Ni4Ti3 precipitates into small grains is a new approach to improve the functional properties of NiTi shape memory alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000347017800021 Publication Date 2014-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 51 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2015 IF: 4.465
Call Number c:irua:120469 Serial 824
Permanent link to this record
 

 
Author Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title (down) Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 106 Issue 106 Pages 48-58
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hydrothermal aging stability of 3Y-TZP-xM2O3 (M = La, Nd, Sc) was investigated as a function of 0.02–5 mol% M2O3 dopant content and correlated to the overall phase content, t-ZrO2 lattice parameters, grain size distribution, grain boundary chemistry and ionic conductivity.

The increased aging stability with increasing Sc2O3 content and the optimum content of 0.4–0.6 mol% Nd2O3 or 0.2–0.4 mol% La2O3, resulting in the highest aging resistance, could be directly related to the constituent phases and the lattice parameters of the remaining tetragonal zirconia.

At low M2O3 dopant contents ≤0.4 mol%, the different aging behavior of tetragonal zirconia was attributed to the defect structure of the zirconia grain boundary which was influenced by the dopant cation radius. It was observed that the grain boundary ionic resistivity and the aging resistance followed the same trend: La3+ > Nd3+ > Al3+ > Sc3+, proving that hydrothermal aging is driven by the diffusion of water-derived mobile species through the oxygen vacancies. Accordingly, we elucidated the underlying mechanism by which a larger trivalent cation segregating at the zirconia grain boundary resulted in a higher aging resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371650300006 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 37 Open Access
Notes The authors acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post-doctoral fellowship (PDM/15/153). Approved Most recent IF: 5.301
Call Number c:irua:132435 Serial 4076
Permanent link to this record
 

 
Author Santamarta, R.; Schryvers, D.
Title (down) Effect of amorphous-crystalline interfaces on the martensitic transformation in Ti50Ni25Cu25 Type A1 Journal article
Year 2004 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 50 Issue Pages 1423-1427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000221009500002 Publication Date 2004-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 29 Open Access
Notes Approved Most recent IF: 3.747; 2004 IF: 2.112
Call Number UA @ lucian @ c:irua:48379 Serial 795
Permanent link to this record
 

 
Author Weng, Y.; Ding, L.; Zhang, Z.; Jia, Z.; Wen, B.; Liu, Y.; Muraishi, S.; Li, Y.; Liu, Q.
Title (down) Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy Type A1 Journal article
Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 180 Issue 180 Pages 301-316
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloys was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atom probe tomography (APT) and density functional theory (DFT) calculation. At the early aging stage, Ag atoms could enter clusters and refine the distribution of these clusters. Then, Ag atoms preferentially segregate at the GP zone/alpha-Al and beta ''/alpha-Al interfaces at the peak aging stage by the replacement of Al atoms in FCC matrix. With prolonging aging time, Ag atoms generally incorporate into the interior of beta '' precipitate, facilitating the formation of QP lattice (a hexagonal network of Si atomic columns) and the local symmetry substructures, Ag sub-unit (1) and Ag sub-unit (2). At the over-aged stage, the Ag sub-unit (1) and Ag sub-unit (2) could transform to the beta'(Ag) (i.e. beta'(Ag1) and beta'(Ag2).) and Q'(Ag) unit cells, respectively. All the precipitates at the over-aging stage have a composite and disordered structure due to the coexistence of different unit cells (beta'(Ag1), beta'(Ag2), Q'(Ag) and beta') and the non-periodic arrangement of Ag atoms within the precipitate. In the equilibrium stage, the incorporated Ag atoms in the precipitates release into the alpha-Al matrix as solute atoms or form Ag particles. In general, Ag atoms undergo a process of “segregate at the precipitate/matrix interface -> incorporate into the interior of precipitate -> release into the alpha-Al matrix” during the precipitation for Al-Mg-Si-Ag alloys. Besides, Ag segregation is found at the interfaces of almost all metastable phases (including GP zone, beta '', beta'/beta'(Ag) phase) in Al-Mg-Si-Ag alloys. The Ag segregation at the beta'/alpha-Al interface could increase the length/diameter ratio of beta' phase and thus promote the additional strengthening potential of these alloys. These findings provide a new route for precipitation hardening by promoting the nucleation and morphology evolution of precipitates. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000495519100028 Publication Date 2019-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access
Notes Approved Most recent IF: 5.301
Call Number UA @ admin @ c:irua:164641 Serial 6295
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title (down) Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record
 

 
Author Lemoine, G.; Delannay, L.; Idrissi, H.; Colla, M.-S.; Pardoen, T.
Title (down) Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 10-21
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A dislocation-based crystal plasticity model is developed in order to study the mechanical and creep/ relaxation behaviour of polycrystalline metallic thin films. The model accounts for the confinement of plasticity due to grain boundaries and for the anisotropy of individual grains, as well as for the significant viscoplastic effects associated to dislocation dominated thermally activated mechanisms. Numerical predictions are assessed based on experimental tensile test followed by relaxation on freestanding Pd films, based on an on-chip test technique. The dislocation-based mechanism assumption captures all the experimental trends, including the stress strain response, the relaxation behaviour and the dislocation density evolution, confirming the dominance of a dislocation driven deformation mechanism for the present Pd films with high defects density. The model has also been used to address some original experimental evidences involving back stresses, Bauschinger effect, backward creep and strain recovery. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000375812100002 Publication Date 2016-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 6 Open Access
Notes Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:133636 Serial 4162
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D.
Title (down) Discovery of core-shell quasicrystalline particles Type A1 Journal article
Year 2023 Publication Scripta materialia Abbreviated Journal
Volume 222 Issue Pages 115040-115046
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000864491400005 Publication Date 2022-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6; 2023 IF: 3.747
Call Number UA @ admin @ c:irua:191489 Serial 7144
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K.
Title (down) Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 127 Issue Pages 17-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:142398 Serial 4645
Permanent link to this record