|   | 
Details
   web
Records
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L.
Title (down) Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 22 Pages 10198-10211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538526500035 Publication Date 2020-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited 32 Open Access OpenAccess
Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:170218 Serial 6566
Permanent link to this record
 

 
Author Justo, Y.; Goris, B.; Sundar Kamal, J.; Geiregat, P.; Bals, S.; Hens, Z.
Title (down) Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 12 Pages 5484-5487
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb cations in PbS quantum rods made from CdS quantum rods by successive complete cationic exchange reactions are partially re-exchanged for Cd cations. Using STEM-HAADF, we show that this leads to the formation of unique multiple dot-in-rod PbS/CdS heteronanostructures, with a photoluminescence quantum yield of 4555%. We argue that the formation of multiple dot-in-rods is related to the initial polycrystallinity of the PbS quantum rods, where each PbS crystallite transforms in a separate PbS/CdS dot-in-dot. Effective mass modeling indicates that electronic coupling between the different PbS conduction band states is feasible for the multiple dot-in-rod geometries obtained, while the hole states remain largely uncoupled.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000302489500015 Publication Date 2012-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 41 Open Access
Notes Fwo; Iap Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:96957 Serial 2226
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title (down) Modeling of glow discharge sources with flat and pin cathodes and implications for mass spectrometric analysis Type A1 Journal article
Year 1997 Publication Journal of the American Society of Mass Spectrometry Abbreviated Journal J Am Soc Mass Spectr
Volume 8 Issue Pages 1021-1029
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997XT64300009 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-0305;1879-1123; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.786 Times cited 15 Open Access
Notes Approved Most recent IF: 2.786; 1997 IF: 2.855
Call Number UA @ lucian @ c:irua:19606 Serial 2125
Permanent link to this record
 

 
Author Dixon, E.; Hadermann, J.; Ramos, S.; Goodwin, A.L.; Hayward, M.A.
Title (down) Mn(I) in an extended oxide : the synthesis and characterization of La1-xCaxMnO2+\delta (0.6\leq x\leq1) Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 45 Pages 18397-18405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reduction of La1xCaxMnO3 (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La1xCaxMnO2+δ. The calcium-rich phases (x = 0.9, 1) adopt (La0.9Ca0.1)0.5Mn0.5O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO6 octahedra and sheets of MnO4 tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La1xCaxMnO2+δ phases with x < 1. Low-temperature neutron diffraction data reveal La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297381200065 Publication Date 2011-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 33 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:94030 Serial 2094
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
Title (down) Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 38 Pages 9515-9520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447224900057 Publication Date 2018-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 50 Open Access OpenAccess
Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059
Permanent link to this record
 

 
Author Claereboudt, J.; Claeys, M.; Geise, H.; Gijbels, R.; Vertes, A.
Title (down) Laser microprobe mass spectrometry of quaternary phosphonium salts: direct versus matrix-assisted laser desorption Type A1 Journal article
Year 1993 Publication Journal of the American Society for Mass Spectrometry Abbreviated Journal J Am Soc Mass Spectr
Volume 4 Issue Pages 798-819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1993LZ48800007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-0305;1879-1123; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.945 Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5424 Serial 1796
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S.
Title (down) Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
Volume 117 Issue 45 Pages 27825-27835
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000590753400016 Publication Date 2020-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access
Notes Approved Most recent IF: 11.1; 2020 IF: 9.661
Call Number UA @ admin @ c:irua:174323 Serial 8107
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title (down) Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 2 Pages 1256-1260
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301084300086 Publication Date 2011-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 56 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97163 Serial 1673
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C.
Title (down) Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 4087-4097
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397477700027 Publication Date 2017-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 535 Open Access OpenAccess
Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M.
Title (down) High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 107-110
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000392036900025 Publication Date 2016-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 267 Open Access OpenAccess
Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339
Permanent link to this record
 

 
Author Lopez-Garcia, C.; Canossa, S.; Hadermann, J.; Gorni, G.; Oropeza, F.E.; de la Pena O'Shea, V.A.; Iglesias, M.; Monge, M.A.; Gutierrez-Puebla, E.; Gandara, F.
Title (down) Heterometallic molecular complexes act as messenger building units to encode desired metal-atom combinations to multivariate metal-organic frameworks Type A1 Journal article
Year 2022 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 144 Issue 36 Pages 16262-16266
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their origina l l y encoded atomic combination. Thus, through the use of heterometalli c ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000841435900001 Publication Date 2022-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15
Call Number UA @ admin @ c:irua:190023 Serial 7169
Permanent link to this record
 

 
Author Imran, M.; Peng, L.; Pianetti, A.; Pinchetti, V.; Ramade, J.; Zito, J.; Di Stasio, F.; Buha, J.; Toso, S.; Song, J.; Infante, I.; Bals, S.; Brovelli, S.; Manna, L.
Title (down) Halide perovskite-lead chalcohalide nanocrystal heterostructures Type A1 Journal article
Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 143 Issue 3 Pages 1435-1446
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCI3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable gamma phase (or “black” phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000614064400024 Publication Date 2021-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 54 Open Access OpenAccess
Notes This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza2017 Materials For Energy”.; sygma Approved Most recent IF: 13.858
Call Number UA @ admin @ c:irua:176584 Serial 6726
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A.
Title (down) GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 41 Pages 16370-16373
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295997500014 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 82 Open Access
Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93582 Serial 1315
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M.
Title (down) Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 11453-11456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383410700008 Publication Date 2016-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 75 Open Access OpenAccess
Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:137123 Serial 4329
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N.
Title (down) Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
Year 2017 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 100 Issue 100 Pages 1508-1516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000399610800034 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.841
Call Number UA @ lucian @ c:irua:143682 Serial 4597
Permanent link to this record
 

 
Author Herkelrath, S.J.C.; Saratovsky, I.; Hadermann, J.; Clarke, S.J.
Title (down) Fragmentation of an infinite ZnO2 square plane into discrete [ZnO2]2- linear units in the oxyselenide Ba2ZnO2Ag2Se2 Type A1 Journal article
Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 130 Issue 44 Pages 14426-14427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Analysis of single crystal X-ray diffraction, neutron powder diffraction, electron diffraction and Zn−K-edge EXAFS data show that Ba2ZnO2Ag2Se2 contains unusual isolated [ZnO2]2− moieties resulting from fragmentation of a ZnO2 infinite plane placed under tension.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000260533400037 Publication Date 2008-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 13 Open Access
Notes Approved Most recent IF: 13.858; 2008 IF: 8.091
Call Number UA @ lucian @ c:irua:72947 Serial 1273
Permanent link to this record
 

 
Author Navulla, A.; Tsirlin, A.A.; Abakumov, A.M.; Shpanchenko, R.V.; Zhang, H.; Dikarev, E.V.
Title (down) Fluorinated heterometallic \beta-diketonates as volatile single-source precursors for the synthesis of low-valent mixed-metal fluorides Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 4 Pages 692-694
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexafluoroacetylacetonates that contain lead and divalent first-row transition metals, PbM(hfac)4 (M = Ni (1), Co (2), Mn (3), Fe (4), and Zn (5)), have been synthesized. Their heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating−bridging fashion. Compounds 1−5 are highly volatile and decompose below 350 °C. Fluorinated heterometallic β-diketonates have been used for the first time as volatile single-source precursors for the preparation of mixed-metal fluorides. Complex fluorides of composition Pb2MF6 have been obtained by decomposition of 1−5 in a two-zone furnace under low-pressure nitrogen flow. Lead−transition metal fluorides conform to orthorhombically distorted Aurivillius-type structure with layers of corner-sharing [MF6] octahedra separated by α-PbO-type (Pb2F2) blocks. Pb2NiF6 and Pb2CoF6 were found to exhibit magnetic ordering below 80 and 43 K, respectively. The ordering is antiferromagnetic, with a weak, uncompensated moment due to the canting of spins. The Pb2MF6 fluorides represent a new class of prospective magnetoelectric materials combining transition metals and lone-pair main-group cations.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000287295300015 Publication Date 2010-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 28 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:88820 Serial 1236
Permanent link to this record
 

 
Author Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M.
Title (down) Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 136 Issue 48 Pages 16932-16939
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345883900040 Publication Date 2014-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 13 Open Access
Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
Call Number UA @ lucian @ c:irua:121331 Serial 1169
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E.
Title (down) F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 133 Issue 48 Pages 19362-19365
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297606500027 Publication Date 2011-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 114 Open Access
Notes Approved Most recent IF: 13.858; 2011 IF: 9.907
Call Number UA @ lucian @ c:irua:93628 Serial 1164
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
Title (down) Excited states of the one-dimensional bipolaron in the strong coupling limit Type A3 Journal article
Year 1994 Publication Bulletin of the American Physical Society Abbreviated Journal
Volume 39 Issue Pages 889
Keywords A3 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-0503 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:20365 Serial 1109
Permanent link to this record
 

 
Author Gonzalez-Nelson, A.; Mula, S.; Simenas, M.; Balciunas, S.; Altenhof, A.R.; Vojvodin, C.S.; Canossa, S.; Banys, J.; Schurko, R.W.; Coudert, F.-X.; van der Veen, M.A.
Title (down) Emergence of coupled rotor dynamics in metal-organic frameworks via tuned steric interactions Type A1 Journal article
Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 143 Issue 31 Pages 12053-12062
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000684581100022 Publication Date 2021-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.858
Call Number UA @ admin @ c:irua:180504 Serial 6867
Permanent link to this record
 

 
Author Johansson, T.B.; Nelson, J.W.; Van Grieken, R.E.; Winchester, J.W.
Title (down) Elemental analysis of aerosol-size fractions by proton-induced X-ray-emission Type A1 Journal article
Year 1973 Publication Transactions of the American Nuclear Society Abbreviated Journal
Volume 17 Issue Nov Pages 103-103
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1973R161300114 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-018x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:113643 Serial 7880
Permanent link to this record
 

 
Author Fang, P.a.; Gu, H.; Wang, P.l.; Van Landuyt, J.; Vleugels, J.; Van der Biest, O.;
Title (down) Effect of powder coating on stabilizer distribution in CeO2-stabilized ZrO2 ceramics Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 7 Pages 1929-1934
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The phase and microstructure relationship of 12 mol% CeO2-stabilized ZrO2 ceramics prepared from coated powder was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersed Xray spectroscopy (EDS). As compared with the sample prepared with co-precipitated method, which exhibited a similar grain size distribution, the EDS analysis revealed that the powder coating induced a wide distribution of CeO2 solubility, which decreases monotonically with the increase of grain size. This variation of stabilizer content from grain to grain rendered many large grains in the monoclinic phase. Stronger cerium segregation to grain boundaries was observed between large grains, which often form thin amorphous films there. The inhomogeneous; CeO2 distribution keeps more tetragonal ZrO2 grains close to the phase boundary to facilitate the transforming toughness. Addition of an Al2O3 precursor in coated powders effectively raises the overall CeO2 stabilizer content in the grains and preserves more transformable tetragonal phase in the microstructure, which further enhanced the fracture toughness. The dependence of CeO2 solubility on grain size may be explained in a simple coating-controlled diffusion and growth process that deserves further investigation.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000230128100040 Publication Date 2005-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 11 Open Access
Notes Approved Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:103156 Serial 830
Permanent link to this record
 

 
Author Bottari, F.; Daems, E.; de Vries, A.-M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K.
Title (down) Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds Type A1 Journal article
Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 142 Issue 46 Pages jacs.0c08691-19630
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Medical Biochemistry
Abstract In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a β-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592911000024 Publication Date 2020-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved Most recent IF: 15; 2020 IF: 13.858
Call Number UA @ admin @ c:irua:173136 Serial 6488
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R.
Title (down) Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
Volume 117 Issue 10 Pages 5478-5485
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519530400054 Publication Date 2020-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited 6 Open Access
Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661
Call Number UA @ admin @ c:irua:166452 Serial 6487
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M.
Title (down) Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa
Volume 115 Issue 115 Pages 3225-3230
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428382400032 Publication Date 2018-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 187 Open Access OpenAccess
Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661
Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D.
Title (down) Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc
Volume Issue Pages jacs.1c05357
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000730569500001 Publication Date 2021-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 29 Open Access OpenAccess
Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858
Call Number EMAT @ emat @c:irua:183951 Serial 6833
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.;
Title (down) Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 26 Pages 10911-10919
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305863900037 Publication Date 2012-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 83 Open Access
Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:100330 Serial 514
Permanent link to this record
 

 
Author Tran, M.L.; Centeno, S.P.; Hutchison, J.A.; Engelkamp, H.; Liang, D.; Van Tendeloo, G.; Sels, B.F.; Hofkens, J.; Uji-i, H.
Title (down) Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires Type A1 Journal article
Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 130 Issue 51 Pages 17240-17241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A simple and low-cost method to create metal−metal hybrid nanostructures possessing fairly regularly spaced hot-spots of surface plasmon resonances is proposed. The nanohybrid structure was prepared via self-assembly during a simple drop-casting procedure, using chemically synthesized silver nanowires and silver nanoparticles prepared in a single batch of a polyol process. Wide field illumination of these nanohybrids produced hot-spots with spacings of around 500 nm to 1 ìm. The intensity of the emission/scattering from the hot-spots fluctuates over time. The proposed structure can be useful for the development of molecular-sensors or as a substrate for surface enhanced Raman/fluorescence spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000263320600018 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 51 Open Access
Notes Fwo – G.0366.06; Fwo – Iap-Vi/27 Approved Most recent IF: 13.858; 2008 IF: 8.091
Call Number UA @ lucian @ c:irua:75946 Serial 498
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.
Title (down) Chemistry and structure of anion-deficient perovskites with translational interfaces Type A1 Journal article
Year 2008 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 91 Issue 6 Pages 1807-1813
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000256410700010 Publication Date 2008-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 39 Open Access
Notes Approved Most recent IF: 2.841; 2008 IF: 2.101
Call Number UA @ lucian @ c:irua:70088 Serial 355
Permanent link to this record