toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D. pdf  url
doi  openurl
  Title (up) Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 14 Issue 1 Pages 4462  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037058500022 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:198158 Serial 8808  
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M. doi  openurl
  Title (up) Probing confined vortices with a superconducting nanobridge Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 4 Pages 044073-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000980861100007 Publication Date 2023-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:197356 Serial 8918  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  isbn
openurl 
  Title (up) Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) Type ME3 Book as editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xi, 175 p.  
  Keywords ME3 Book as editor; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-833839-0-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:201049 Serial 9077  
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R. url  doi
openurl 
  Title (up) Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal  
  Volume 620 Issue 7975 Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001153630400007 Publication Date 2023-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited 17 Open Access  
  Notes Approved Most recent IF: 64.8; 2023 IF: 40.137  
  Call Number UA @ admin @ c:irua:203827 Serial 9078  
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G. url  doi
openurl 
  Title (up) Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
  Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 13 Issue 7 Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000972133900001 Publication Date 2023-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.679  
  Call Number UA @ admin @ c:irua:194898 Serial 7333  
Permanent link to this record
 

 
Author Friedrich, T. url  openurl
  Title (up) Quantifying atomic structures using neural networks from 4D scanning transmission electron microscopy (STEM) datasets Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 127 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscience and nanotechnologies are of immense importance across many fields of science and for numerous practical applications. In this context, scanning transmission electron microscopy (STEM) and 4D-STEM are among the most powerful characterization methods at the atomic scale. Annular dark-field (ADF)-STEM can be used to quantify atomic structures in 3D by counting atoms based on a single projection image. In 4D-STEM a full diffraction pattern is recorded at each scan step, which enables more dose efficient imaging and the utilization of various advanced imaging modalities, which can however be complex and slow. Both, STEM and 4D-STEM suffer from noise and distortions. In the first section of this work the most important of these distortions are discussed and it is shown how image restoration with a dedicated convolutional neural network (CNN) can be beneficial for atomic structure quantifications in ADF-STEM. In the second part, a new 4D-STEM imaging method real-time-integrated-centre-of-mass (riCOM) is introduced, which is a very dose-efficient and fast algorithm that enables unprecedented live-imaging capabilities for 4D-STEM. It is based on the integrated centre-of-mass approach, but is reformulated with variable integration ranges and optional filters, which allows for a tunable contrast transfer function. This enables the imaging of light and heavy elements simultaneously at very low doses. In the third part another new 4D-STEM method, coined AIRPI (AI-assisted rapid phase imaging) is introduced, which uses a CNN to retrieve a patch of the specimen's phase image for each scan position, based on the diffraction patterns in the probe's immediate surroundings. This allows also live imaging in principle and surpasses comparable state-of-the-art algorithms in terms of resolution also at low doses. Different atomic columns can be reliably distinguished over a wide range of atomic numbers, enabling a very good image interpretability. Further, AIRPI can recover low frequency image components, which preserves thickness information. This is a unique and important feature which could make quantitative 4D-STEM feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196826 Serial 8919  
Permanent link to this record
 

 
Author Kavak, S.; Kadu, A.A.; Claes, N.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Batenburg, K.J.; Bals, S. pdf  url
doi  openurl
  Title (up) Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets Type A1 Journal article
  Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal  
  Volume 127 Issue 20 Pages 9725-9734  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in determining their structure-property relationships as well as in the development of structures with desired properties. Electron tomography has become a widely utilized technique for the three-dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative morphological parameters from the reconstructed volume can be a complex and labor-intensive task. In this study, we aim to overcome this challenge by automating the volumetric segmentation process applied to three-dimensional reconstructions of nanoparticle assemblies. The key to enabling automated characterization is to assess the performance of different volumetric segmentation methods in accurately extracting predefined quantitative descriptors for morphological characterization. In our methodology, we compare the quantitative descriptors obtained through manual segmentation with those obtained through automated segmentation methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres and CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods decorated with both CdSe/CdS or PbS quantum dots. We use two unsupervised segmentation algorithms: the watershed transform and the spherical Hough transform. Our results demonstrate that the choice of automated segmentation method is crucial for accurately extracting the predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior performance in accurately extracting quantitative descriptors, such as particle size and interparticle distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of complex nanoparticle assemblies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991752700001 Publication Date 2023-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1181122N ; Horizon 2020 Framework Programme, 861950 ; H2020 European Research Council, 815128 ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:196971 Serial 8793  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title (up) Quantum transport study of contact resistance of edge- and top-contacted two-dimensional materials Type P1 Proceeding
  Year 2023 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2023, Kobe, Japan Abbreviated Journal  
  Volume Issue Pages 45-48  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We calculate the contact resistance for an edge- and top-contacted 2D semiconductor. The contact region consists of a metal contacting a monolayer of MoS2 which is otherwise surrounded by SiO2. We use the quantum transmitting boundary method to compute the contact resistance as a function of the 2D semiconductor doping concentration. An effective mass Hamiltonian is used to describe the properties of the various materials. The electrostatic potentials are obtained by solving the Poisson equation numerically. We incorporate the effects of the image-force barrier lowering on the Schottky barrier and examine the impact on the contact resistance. At low doping concentrations, the contact resistance of the top contact is lower compared to edge contact, while at high doping concentrations, the edge contact exhibits lower resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117703800012 Publication Date 2023-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-4-86348-803-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202839 Serial 9079  
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title (up) Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title (up) Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 199 Issue Pages 112772-112777  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000954788800001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:196106 Serial 8446  
Permanent link to this record
 

 
Author Wittner, N.; Slezsák, J.; Broos, W.; Geerts, J.; Gergely, S.; Vlaeminck, S.E.; Cornet, I. pdf  url
doi  openurl
  Title (up) Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy Type A1 Journal article
  Year 2023 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal  
  Volume Issue Pages 121912  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9%–27.1%). After variable selection and normalization, a PLSR model with a high coefficient of determination (  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985309100010 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4; 2023 IF: 2.536  
  Call Number UA @ admin @ c:irua:190328 Serial 7201  
Permanent link to this record
 

 
Author Lobato, I.; De Backer, A.; Van Aert, S. pdf  url
doi  openurl
  Title (up) Real-time simulations of ADF STEM probe position-integrated scattering cross-sections for single element fcc crystals in zone axis orientation using a densely connected neural network Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 251 Issue Pages 113769  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantification of annular dark field (ADF) scanning transmission electron microscopy (STEM) images in terms

of composition or thickness often relies on probe-position integrated scattering cross sections (PPISCS). In

order to compare experimental PPISCS with theoretically predicted ones, expensive simulations are needed for

a given specimen, zone axis orientation, and a variety of microscope settings. The computation time of such

simulations can be in the order of hours using a single GPU card. ADF STEM simulations can be efficiently

parallelized using multiple GPUs, as the calculation of each pixel is independent of other pixels. However, most

research groups do not have the necessary hardware, and, in the best-case scenario, the simulation time will

only be reduced proportionally to the number of GPUs used. In this manuscript, we use a learning approach and

present a densely connected neural network that is able to perform real-time ADF STEM PPISCS predictions as

a function of atomic column thickness for most common face-centered cubic (fcc) crystals (i.e., Al, Cu, Pd, Ag,

Pt, Au and Pb) along [100] and [111] zone axis orientations, root-mean-square displacements, and microscope

parameters. The proposed architecture is parameter efficient and yields accurate predictions for the PPISCS

values for a wide range of input parameters that are commonly used for aberration-corrected transmission

electron microscopes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001011617200001 Publication Date 2023-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N and G0A7723N) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF), Belgium. Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number EMAT @ emat @c:irua:197275 Serial 8812  
Permanent link to this record
 

 
Author Craig, T.M.; Kadu, A.A.; Batenburg, K.J.; Bals, S. url  doi
openurl 
  Title (up) Real-time tilt undersampling optimization during electron tomography of beam sensitive samples using golden ratio scanning and RECAST3D Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 11 Pages 5391-5402  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it can cause damage to samples due to high electron doses and long exposure times. To minimize such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient sampling. Therefore, it is important to determine the optimal number of projections that minimizes both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive samples. Current methods for determining this optimal number of projections involve acquiring and post-processing multiple reconstructions with different numbers of projections, which can be time-consuming and requires multiple samples due to sample damage. To improve this process, we propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the optimal number of projections in real-time during a single acquisition. This protocol was validated using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-sensitive metal–organic framework complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000937908900001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 1 Open Access OpenAccess  
  Notes H2020 European Research Council, 815128 ; H2020 Marie Skłodowska-Curie Actions, 860942 ; Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number EMAT @ emat @c:irua:195235 Serial 7260  
Permanent link to this record
 

 
Author Buyle, M.; Audenaert, A.; Brusselaers, J.; Van Passel, S. pdf  url
doi  openurl
  Title (up) Rebound effects following technological advancement? The case of a global shock in ferrochrome supply Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 391 Issue Pages 136264-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings; Engineering Management (ENM)  
  Abstract Novel recycling technologies aim at increasing material efficiency by turning former waste products into valuable reclaimed resources. A key question is whether such technologies really reduce primary resource consumption or instead stimulate aggregated market demand. In this study the consequences of a positive shock in ferrochrome supply to the global stainless steel value chain is assessed quantitatively. This new source might be unlocked by technology under development for the recovery of chromium from carbon and stainless steel slags. The aim of this study is to quantitatively assess the income and substitution effects of reclaimed ferrochrome along a part of the stainless steel value chain. The impact of the supply shock is analysed by means of a vector autoregression (VAR), a dynamic model where lagged values of all included variables estimate current state of the system. Additionally, the VAR model is extended to a structural vector autoregression (SVAR) to account for contemporary effects as well. Both the VAR and SVAR model indicate that additional ferrochrome supply leads to an increase in aggregated supply of stainless steel, in combination with a substitution effect between ferrochrome and nickel. The extended SVAR model additionally highlights that contemporaneous effects do play an important role as well to capture the direct rebound effect in the ferrochrome market when working with quarterly data. In other words, an additional supply of reclaimed ferrochrome triggers a complex combination of interactions and consequences, yet it does not necessarily lead to a lower overall material consumption. The main contributions of this paper are the assessment of direct rebound effects of supplying reclaimed metals along the value chain and the demonstration that quantifying the effects of circular strategies is feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930165300001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:193569 Serial 7365  
Permanent link to this record
 

 
Author Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title (up) Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.588  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W. pdf  url
doi  openurl
  Title (up) Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
  Year 2023 Publication Chemsuschem Abbreviated Journal  
  Volume 16 Issue 5 Pages e202201647-25  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926901300001 Publication Date 2023-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 7.226  
  Call Number UA @ admin @ c:irua:193633 Serial 7335  
Permanent link to this record
 

 
Author Poppe, R. url  openurl
  Title (up) Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages iv, 150 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200610 Serial 9084  
Permanent link to this record
 

 
Author Hofer, C.; Pennycook, T.J. pdf  url
doi  openurl
  Title (up) Reliable phase quantification in focused probe electron ptychography of thin materials Type A1 Journal Article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 254 Issue Pages 113829  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Electron ptychography provides highly sensitive, dose efficient phase images which can be corrected for aberrations after the data has been acquired. This is crucial when very precise quantification is required, such as with sensitivity to charge transfer due to bonding. Drift can now be essentially eliminated as a major impediment to focused probe ptychography, which benefits from the availability of easily interpretable simultaneous Z-contrast imaging. However challenges have remained when quantifying the ptychographic phases of atomic sites. The phase response of a single atom has a negative halo which can cause atoms to reduce in phase when brought closer together. When unaccounted for, as in integrating methods of quantification, this effect can completely obscure the effects of charge transfer. Here we provide a new method of quantification that overcomes this challenge, at least for 2D materials, and is robust to experimental parameters such as noise, sample tilt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071608700001 Publication Date 2023-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access  
  Notes FWO, G013122N ; Horizon 2020 Framework Programme; Horizon 2020; European Research Council, 802123-HDEM ; European Research Council; Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number EMAT @ emat @c:irua:200272 Serial 8987  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title (up) Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 29 Open Access OpenAccess  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Zhang, K. file  openurl
  Title (up) Revealing the correlation between titania support properties and propylphosphonic acid modification by in-depth characterization Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVI, 262 p.  
  Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Grafting organophosphonic acids modification (PAs) on metal oxides has shown to be a flexible technology to tune the surface properties of metal oxides for various applications. Nevertheless, there are still puzzles that need to be addressed, such as the correlations between metal oxides properties (types of surface reactive sites) and the modification (modification degree), the correlations between metal oxides properties and the properties of modified surfaces. Moreover, the currently used liquid-phase method for the grafting has associated impeding effects of solvent on tailoring the modification degrees, and also causes the formation of metal phosphonate side products. The solid-phase method can induce the unwanted changes in crystal phase of supports. Based on these questions, the three titania supports with divergent surface properties were selected as the metal oxides supports investigated, propylphosphonic acid (3PA) modification was carried out under the same synthesis conditions: four different concentrations, two solvents (water or toluene), and one reaction time (4 h) and temperature (90 ). MeOH chemisorption was introduced to probe the surface (un)reactive sites for 3PA modification. On the other hand, MeOH chemisorption and inverse gas chromatography (IGC) were combined to characterize the changes in surface polarity and acidic properties induced by the modification. Next, a solid-phase method, manual grinding, was proposed to graft 3PA on titania, avoiding the impeding effects of solvent on improving modification degree and the formation of the titania phosphonate side products, as well as preserving the crystal phase. The results indicate that methanol chemisorption can qualitatively analyze the surface active sites that are consumed by 3PA modification, its chemisorption capacity shows the consistent trend with the maximum modification degree, hereby revealing the kinds of interactions that are important in controlling surface coverage. Titania supports is found to play an important role in changes in surface polarity and acidic properties by charactering the three modified titania samples at a similar modification degree using the methanol chemisorption coupled with in-situ infrared and thermogravimetric-mass spectrometer, and the IGC. Moreover, IGC provides additional information about the changes in binding modes. Furthermore, grafting 3PA modification on titania was achieved by manual grinding. Compared to the liquid-phase method, the maximum modification degree obtained by the manual grinding is 25 % higher while using 83.3 % or 75.0% lower amounts of expensive 3PA and limiting the formation of titania phosphonate side products. Compared to the reactive milling method, the proposed manual grinding method preserves the crystal phase(s) of titania.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198726 Serial 8924  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title (up) Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.1 Times cited Open Access  
  Notes Approved Most recent IF: 5.1; 2023 IF: 3.184  
  Call Number UA @ admin @ c:irua:201986 Serial 9086  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F. pdf  doi
openurl 
  Title (up) Roadmap on structured waves Type A1 Journal article
  Year 2023 Publication Journal of optics Abbreviated Journal  
  Volume 25 Issue 10 Pages 103001-103079  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001061350200001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024  
  Notes This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741  
  Call Number UA @ admin @ c:irua:199327 Serial 8925  
Permanent link to this record
 

 
Author Vervoort, P.; Grymonprez, H.; Bouckaert, N.; Derijcke, D.; De Wael, W. isbn  openurl
  Title (up) Ruimte en gezondheidsongelijkheid aanpakken : een kwestie van sociale rechtvaardigheid Type H2 Book chapter
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H2 Book chapter; Sociology; Law; Centre for Research on Environmental and Social Change  
  Abstract De bijdrage gaat dieper in op de relatie tussen ruimte en gezondheidsongelijkheid, bespreekt gezondheidsongelijkheid vanuit een rechtenperspectief en illustreert een aantal praktijken waarin de aandacht voor ruimte en gezondheidsongelijkheid samenkomen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-2-509-04324-5 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200534 Serial 9225  
Permanent link to this record
 

 
Author Tchakoua, T.; Gerrits, N.; Smeets, E.W.F.; Kroes, G.-J. url  doi
openurl 
  Title (up) SBH17 : benchmark database of barrier heights for dissociative chemisorption on transition metal surfaces Type A1 Journal article
  Year 2023 Publication Journal of chemical theory and computation Abbreviated Journal  
  Volume 19 Issue 1 Pages 245-270  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903286100001 Publication Date 2022-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5; 2023 IF: 5.245  
  Call Number UA @ admin @ c:irua:193426 Serial 7274  
Permanent link to this record
 

 
Author Derks, K. file  openurl
  Title (up) Scanning Michael Sweerts and Michaelina Wautier : uncovering the working methods of 17th-century Brussels artists by means of MA-XRF examination Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 634 p.  
  Keywords Doctoral thesis; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This dissertation focuses on the materials and techniques used by the Brussels artists Michael Sweerts (1618-1664) and Michaelina Wautier (1614-1689). It tries to answer the following research questions: 1.Did 17th-century Brussels-based artists use idiosyncratic painting materials and techniques, and can their work be distinguished from paintings created in other artistic centers based on these materials and techniques? 2.How did Sweerts and Wautier influence each other’s work? In order to answer the research questions, a selection of relevant and representative paintings from Sweerts’ and Wautier’s oeuvre has been studied with MA-XRF scanning and microscopic examination. The results are discussed in volume 2 of this dissertation, and form the basis upon which the chapters in volume 1 are built. MA-XRF scanning is a non-destructive imaging technique based on the technique of X-ray fluorescence (XRF). The technique allows for the collection of elemental information about the materials present in a work of art. The work presented in this dissertation has shed more light on the working methods of Sweerts and Wautier. It has shown they both showed an openness and willingness to continue learning and developing as an artist. Wautier did not feel constrained to work only in one genre and apparently carried on developing her skills throughout her career, as evidenced by Flower Garland with Butterfly. She might have trained with a specialized artist to master their idiosyncratic working methods and this diverse genre. This suggests that Wautier had an interest in art education. Sweerts too had a passion for art education: he was involved in the drawing academy of Camillo Pamphilj in Rome, and later established his own academy for life drawing in Brussels. Sweerts’ work clearly shows the influence of his Italian contemporaries. Whilst living in Rome, he adapted his working methods to local customs such as working on brightly colored grounds. Wautier’s oeuvre shows that she was open to explore different genres and that she took inspiration from her contemporaries, including Theodoor van Loon and Daniël Seghers. In doing so, she furthered the development of different genres as she added original elements to her compositions. It is the conclusion of this dissertation that Michaelina Wautier can thus be considered one of the innovative artists of mid-17th-century Flemish painting, who inspired other artists in the Low Countries, including Michael Sweerts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197182 Serial 8927  
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S. pdf  url
doi  openurl
  Title (up) Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume Issue Pages 1916-1921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001006191600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:197004 Serial 8795  
Permanent link to this record
 

 
Author Nematollahi, P. pdf  url
doi  openurl
  Title (up) Selectivity of Mo-NC sites for electrocatalytic N₂ reduction : a function of the single atom position on the surface and local carbon topologies Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 612 Issue Pages 155908-155909  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transition metal (TM) doped two-dimensional single-atom catalysts are known as a promising class of catalysts for electrocatalytic gas conversion. However, the detailed mechanisms that occur at the surface of these catalysts are still unknown. In the present work, we simulate three Mo-doped nitrogenated graphene structures. In each catalyst, the position of the Mo active site and the corresponding local carbon topologies are different, i.e. MoN4C10 with in-plane Mo atom, MoN4C8 in which Mo atom bridges two adjacent armchair-like graphitic edges, and MoN2C3 in which Mo is doped at the edge of the graphene sheet. Using Density Functional Theory (DFT) calculations we discuss the electrocatalytic activity of Mosingle bondNsingle bondC structures for nitrogen reduction reaction (NRR) with a focus on unraveling the corresponding mechanisms concerning different Mo site positions and C topologies. Our results indicate that the position of the active site centers has a great effect on its electrocatalytic behavior. The gas phase N2 efficiently reduces to ammonia on MoN4C8 via the distal mechanism with an onset potential of −0.51 V. We confirm that the proposed pyridinic structure, MoN4C8, can catalyze NRR effectively with a low overpotential of 0.35 V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901469900003 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number UA @ admin @ c:irua:192430 Serial 7275  
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
  Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal  
  Volume 43 Issue Pages 635-656  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000966639200001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number UA @ admin @ c:irua:196033 Serial 8516  
Permanent link to this record
 

 
Author Labey, E.; Fonteyn, F.; Wilmot, A.; El Amouri, S.; Gjurova, A.; De Cock, W.; De Wael, F. isbn  openurl
  Title (up) Shaping utopia through law: how the law does (not) provide an answer to societal challenges Type ME2 Book as editor or co-editor
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 210 p.  
  Keywords ME2 Book as editor or co-editor; Law; Government and Law  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-000-1654-5 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198938 Serial 9227  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title (up) Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: