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Abstract7

Quantification of annular dark field (ADF) scanning transmission electron microscopy (STEM) images in terms of
composition or thickness often relies on probe-position integrated scattering cross sections (PPISCS). In order to com-
pare experimental PPISCS with theoretically predicted ones, expensive simulations are needed for a given specimen,
zone axis orientation, and a variety of microscope settings. The computation time of such simulations can be in the
order of hours using a single GPU card. ADF STEM simulations can be efficiently parallelised using multiple GPUs,
as the calculation of each pixel is independent of other pixels. However, most research groups do not have the neces-
sary hardware, and, in the best-case scenario, the simulation time will only be reduced proportionally to the number
of GPUs used. In this manuscript, we use a learning approach and present a densely connected neural network that is
able to perform real-time ADF STEM PPISCS predictions as a function of atomic column thickness for most common
face-centered cubic (fcc) crystals (i.e., Al, Cu, Pd, Ag, Pt, Au and Pb) along [100] and [111] zone axis orientations,
root-mean-square displacements, and microscope parameters. The proposed architecture is parameter efficient and
yields accurate predictions for the PPISCS values for a wide range of input parameters that are commonly used for
aberration-corrected transmission electron microscopes.

Keywords: ADF STEM simulations, Multem, Probe position integrated scattering cross section, Neural network,8

real-time, Tensorflow9

1. Introduction10

Scanning transmission electron microscopy (STEM) with an annular dark field (ADF) detector has become a popular11

technique for quantifying nanostructures at the atomic level due to the absence of contrast reversals in the recorded12

images with sample thickness and defocus. The quantification process can be performed through three-dimensional13

atomic resolution electron tomography [1], direct comparison of experimental data with image simulations [2], or14

by using statistical methods to extract quantitative information from the images [3]. Different methods have been15

developed for counting the number of atoms in each atomic column from a single ADF STEM image [3, 4, 5]. As16

a measure of performance for atom-counting, probe-position integrated scattering cross sections (PPISCS) are often17

used as they are highly sensitive to the number of atoms in a column and its composition [6, 4, 7]. Additionally,18

they are robust to probe parameters such as defocus and other aberrations [8, 9]. The PPISCS corresponds to the19

integrated intensity over the atomic feature and can be determined by integrating image intensities in Voronoi cells20

around the positions of the atomic features [8], or by estimating the volume under each atomic column by fitting21

a parametric model consisting of 2D overlapping Gaussian peaks to the experimental images [3]. From a set of22
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PPISCSs, atoms can be counted using an image simulation-based approach [5], a statistics-based approach combined23

with prior knowledge of the sample thickness range [10], or by using a hybrid approach that includes prior knowledge24

from image simulations into the existing statistics-based method [11]. Furthermore, atom counts for each chemical25

element in alloy systems can be determined by combining prior knowledge with the so-called atomic lensing model,26

which enables the prediction of PPISCSs of mixed columns from the PPISCSs of atomic columns consisting of a27

single atomic element [12].28

In order to obtain accurate results for atom-counting, ADF-STEM image simulations are required that include a quan-29

tum mechanical description of the electron-specimen interaction for the same specimen, zone axis orientation, and30

microscope settings as those used in the experiment. However, in practice, the absolute values of several parameters31

are unknown, such as defocus, spatial incoherence, root-mean-square displacement (rmsd), specimen thickness, mist-32

ilt, carbon contamination, and other experimental uncertainties [8]. This often leads to a mismatch between the exper-33

iment and simulation [13]. A common method for addressing this mismatch is to estimate the unknown parameters by34

matching simulations with experimental images. Although modern frozen phonon GPU multislice implementations35

of the electron-specimen interaction have reduced the computation time of ADF STEM simulations [14, 15, 16], these36

calculations still take several hours using a single GPU card. ADF STEM simulations can be efficiently parallelised37

using multiple GPUs, as the calculation of each pixel is independent of the other pixels. However, most research38

groups do not have access to the necessary hardware. Furthermore, in the best-case scenario, the simulation time can39

only be reduced proportionally to the number of GPUs used. Therefore, it is highly desirable to significantly speed up40

the calculation of the ADF STEM PPISCS in order to facilitate the quantification process.41

Machine learning based on artificial neural networks has become a state-of-the-art method due to its ability to learn42

from data by adjusting the weight connections between neurons during the training process. Additionally, neural net-43

works have demonstrated breakthrough performance for various tasks such as image recognition [17], image restora-44

tion [18], image super-resolution [19], natural language processing [20] and cognitive science [21]. The performance45

of the neural network is highly dependent on the quantity and quality of the available training data as well as on its46

sampling distribution. Furthermore, in order to obtain consistent predictions for physical systems, it is essential that47

the neural network learns the underlying physics constraints of the governing laws. This can be embedded in the48

network architecture itself [22, 23] or in its loss function [24, 25].49

In this paper, we use a machine learning approach and present a densely connected neural network to perform real-50

time ADF STEM PPISCS-thickness simulations for the most common face-centered cubic (fcc) crystals along their51

main zone axis orientations, microscope parameters, and root-mean-square displacement (rmsd) values. In Section 2,52

we will explain the methodology, including the steps of data generation, neural network architecture, the choice of the53

loss function, and implementation details. In Section 3, we will present and discuss the results. Finally, in Section 4,54

we will draw conclusions.55

2. Methodology56

PPISCSs have been proven to be robust for various probe parameters such as defocus, aberrations, and temporal57

incoherence [8, 9] in aberration-corrected scanning transmission electron microscopes. Additionally, they remain58

invariant when dealing with spatial incoherence. Despite these advantages, it is still important to have accurate esti-59

mations of PPISCSs-thickness through image simulations in order to determine the number of atoms and composition60

in an atomic feature. It is noteworthy that, PPISCS-thickness values have non-linear dependence regarding the mi-61

croscope parameters and the rmsd value. While it is possible to train a separate neural network for each fcc crystal62

for a given zone axis, this approach unnecesarily results in a large number of networks. It has been observed that63

PPISCS-thickness predictions share many similarities regardless of their atomic number and zone axis orientation.64

Additionally, the universal approximation theorem for neural networks, as stated in [26], states that any continuous65

function can be approximated by a multilayer neural network. Therefore, it is more efficient to train a single neural66

network for PPISCS-thickness predictions. Our results indicate that this approach also reduces the total number of67

parameters in the network without compromising its accuracy.68

Our aim is therefore to train a neural network to perform real-time ADF STEM PPISCS-thickness simulations for the69
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most commonly used fcc crystals in material science, along their main zone axis orientations, microscope parameters,70

and rmsd values. The first step in achieving this is to describe the data generation process.71

2.1. Data generation72

In this work, use is made of the frozen atom multislice simulation approach implemented in the Multem software73

[14, 15], which was shown to yield results matching experiments [27]. Although our methodology can be applied to74

general fcc crystals with different zone axis orientations, the calculation time for ADF STEM PPISCS-thickness puts75

an upper limit on the number of fcc crystals and zone axis orientations that we can generate for our training data using76

our computational resources. Therefore, we have focused on the most commonly used fcc crystals in materials science77

along their most relevant zone axis orientations that are used for the atom-counting procedure. We considered Al, Ni,78

Cu, Pd, Ag, Pt, Au, and Pb fcc crystals along the [100] and [110] zone axis orientation (zao) up to 61 and 87 atoms,79

respectively. This corresponds to a maximum thickness of around 25nm for Au fcc crystals. In addition, the rmsd80

value for all atoms of the specimen was assumed to be the same. An x-y supercell size of na×nb = ⌊50Å/a⌋×⌊50Å/b⌋81

unit cells was chosen with a and b the projected unit cell lattice parameters, where ⌊⌋ and ⌊⌉ denote the floor and ceil82

operators. Moreover, a numerical 2D real-space grid of ⌊1536 × na/nmax⌉ × ⌊1536 × nb/nmax⌉ pixels was selected83

with nmax = max(na, nb). The ADF STEM images were scanned over an area of one projected unit cell using pixel84

sizes equal to ∆x = a/⌊a/0.15⌋ and ∆y = b/⌊b/0.15⌋. The multislice frozen atom calculation was performed with 3085

configurations and a slice thickness dz corresponding to the distance between consecutive crystalline planes along the86

beam direction. In this study, simulations were performed assuming symmetric and concentric annular detectors with87

an ideal detector sensitivity, which refers to a detector that has a homogeneous response to electrons. All simulation88

settings are summarised in Table 1.89

Table 1: Microscope settings used for data generation

Atomic element Z 13, 28, 29, 46, 47, 78, 79, 82
Zone axis orientation zao [100] and [110]
Acceleration voltage HT [60, 80, 100, 120, 200, 300]kV
Spherical aberration Cs [−1.0, 1.0]µm
Defocus C10 [−100.0, 100.0]Å
Convergence angle α [17.5, 35.5]mrad
Inner detector angle θ0 [18.0, 250]mrad
Outer detector angle θe [28.0, 250]mrad
Root mean squared displacement rmsd [0.075, 0.15]Å

The range of input variables covers the most common experimental conditions for an aberration-corrected transmis-90

sion electron microscope. For each specimen orientation, we simulated 5000 ADF STEM images where the input91

variables correspond to random draws from a uniform distribution with the ranges defined in Table 1. In order to92

increase our training data, 20 consecutive detector angles with a minimum angular detector size of 10mrad and with93

an initial random inner detector angle bigger than the convergence angle were used. In this manner, 210 consecutive94

detector combinations are generated, which greatly increases our training data. This results in a total set of 16.695

millions examples corresponding to the number of elements × the number of zone-axis orientations × the number of96

simulated ADF STEM images × the combinations of the consecutive detectors or 8×2×5000×210. Additionally, it is97

worth noting that the range of rmsd values shown in Table 1 represents a temperature range of around [200, 650]❽ for98

a Au fcc crystal [28]. From the simulated images, the PPISCSs were estimated as a function of thickness by summing99

the image intensity values, multiplying by the product of the pixel sizes and by a scaling parameter, which is equal to100

the number of atoms on the column over the number of projected atoms in the image.101

It is important to note that the simulation time for each example of a given specimen orientation, with randomly gen-102

erated input parameters and 20 consecutive detectors, was one hour using the 12GB NVIDIA GTX Titan Volta GPU.103

Despite utilizing our research facility, which consists of 20 of these high-performance GPUs, it still took approxi-104

mately 3.5 months to generate the full dataset. This emphasizes the significant computational resources required for105

this type of research.106
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Our next step is to design a neural network to map in real-time an input vector x = [Z, zao,HT,Cs,C10, α, θ0, θe, rmsd]107

to an output vector y = PPISCSs.108

2.2. Network architecture109

Fig. 1 shows the network architecture N which is based on the 1D version of the densely connected network archi-110

tecture DenseNet [29]. The input values of the network are denoted by x and the output equals yp = N(x). Using111

skip connections to directly connect all layers alleviates the vanishing gradient problem, strengthens feature propaga-112

tion, encourages feature reuse, and substantially reduces the number of parameters since there is no need to relearn113

redundant features. The most important parameter for a given number of layers nlay for DenseNets is the growth rate114

G which regulates how much information is added to the network by each layer. To reduce the number of hyperpa-115

rameters, the number of units in the input layer G0 was set to G. The number of units of the output layer was set to116

87, which represents the highest number of atoms per column in our simulations. The number of layers nlay and the117

growth rate G are optimised and will be discussed in section 3.1. The smooth and non-monotonic Swish activation118

function was used for the hidden layers [30]. To fulfil the positiveness hard constraint of the PPISCS, the Softplus119

function was used for the activation function of the output layer.120
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Figure 1: Densely connected network architecture for probe-position integrated scattering cross sections.

2.3. Loss function121

The loss function is the effective driver of the network’s learning. Its goal is to map a set of parameter values of122

the network onto a scalar value, which allows candidate solutions to be ranked and compared. Our loss function is123

composed of four terms and can be expressed as follows:124

L = λn
1L

n
1 + λ

n
2L

n
2 + λ

log
1 L

log
1 + λ

cstr
1 L

cstr
1 , (1)

where λn
1, λn

2, λlog
1 and λcstr

1 are the weighting parameters balancing the different loss terms, which are described in the125

following sections.126

2.3.1. Ln
1 loss127

Fig. 2 shows the PPISCS values as a function of thickness for two different sets of specimen and microscope settings,128

where the figure on the left (Z = 13) and right (Z = 82) correspond to the smallest and largest values present in129

the training data. From this figure it is clear that there exists a large range of variation in the PPISCS values in our130

training data. When implementing the conventional definition for the L1 and also the L2 loss, this would mainly131

result in inaccurate predictions for small PPISCS values, corresponding e.g. to small detector ranges and/or low132

atomic numbers, and more accurate predictions for large PPISCS values. To overcome this problem, the loss function133

L1 is evaluated after normalising the ground truth y and neural network predicted yp values with a normalization134

scaling factor equal to wsc = max(y). This results into yn and yn
p, respectively, where the superscript n refers to the135

normalised values. The normalised L1, i.e. Ln
1, is then defined as:136

Ln
1 = Ey,yp

{∥

∥

∥yn − yn
p

∥

∥

∥

}

, (2)
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where Ey,yp
{.} is an operator representing the expectation value computed on variables y and yp and not on the trans-137

formed variables yn and yn
p.138
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Figure 2: Probe-position integrated scattering cross sections as a function of the number of atoms for a set of specimen and microscope parameters
corresponding to the smallest (left) and largest (right) values in the training data.

2.3.2. Ln
2 loss139

In the loss function in Eq. (1), the normalisedL2 loss function, Ln
2, is included as well since it improves predictions of140

the PPISCSs over the full thickness range. This can be understood since L2 is sensitive to large errors, which mostly141

occur for large thickness values of the PPISCSs. This loss function is defined as:142

Ln
2 = Ey,yp

{

∥

∥

∥yn − yn
p

∥

∥

∥

2
}

(3)

2.3.3. L
log
1 loss143

Although the Ln
1 and Ln

2 losses can be used to solve the problem resulting from the large variation in PPISCS values144

for different training examples, the training process can become unstable ending up in a local minimum. Therefore,145

an extra L1 loss function is included in which a logarithmic transformation is applied to y and yp. The Llog
1 loss is146

defined as:147

L
log
1 = Ey,yp

{∥

∥

∥log (y) − log (yp)
∥

∥

∥

}

, (4)

This transformation reduces the difference in magnitude of the PPISCS values shown in Fig. 2 from a factor of ∼ 105
148

to ∼ 101. This stabilizes the training process and improves convergence as this transformation maintains the scale149

factor ratio of different training examples.150

2.3.4. Constraint loss151

Additivity of STEM images of contiguous detectors implies that PPISCS must also be additive. In principle, this is a152

hard constraint which could in principle be included in the architecture design. However, since this is not straightfor-153

ward it was included in the loss function as a soft constraint [23], and is expressed as follows:154

Lcstr
1 = Ey,yp

{∥

∥

∥yn − ycstr
p

∥

∥

∥

}

, (5)

ycstr
p = (N(xc, θ0, θm) +N(xc, θm, θe)) /wsc, (6)

where xc = [Z, zao,HT,Cs,C10, α, rmsd], N(xc, θ0, θm) and N(xc, θm, θe) are the predicted PPISCS values of two uni-155

form randomly generated contiguous detectors with inner and outer radius equal to [θ0, θm] and [θm, θe], respectively.156
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2.4. Implementation details157

In order to train our neural network, we randomly selected 16 million examples from our total dataset and used them158

for training. The remaining 600000 examples were used to evaluate the performance of the model. It is important159

to note that the validation dataset is not used during the training process, but only to evaluate the performance of160

the model. All models are implemented using the Keras high-level API of Tensorflow 2.10 framework [31] and are161

trained with 12GB NVIDIA GTX Titan Volta GPU. All network weights were initialised following reference [32].162

Since the batch normalization, dropout, and weight decay hamper the model performance, they were not used in this163

study. Our learning policy is based on the Adam optimiser [33] with β1 = 0.9, β2 = 0.999, ϵ = 1×10−7, and is divided164

in two stages. In the first part, the model is trained to minimize the loss function given by Eq. (1) with λn
1 = 1.0×10−1,165

λn
2 = 1.0 × 10−2, λlog

1 = 1.6 × 101, λcstr = 1.0 × 10−2 for 20 epochs with a learning rate of 5 × 10−5. The weighting166

coefficients were chosen to give a high dominance to the Llog
1 loss while yet maintaining a small contribution from167

the other losses, which were found to improve the convergence. This was followed by a second training stage with168

λn
1 = 1.0 × 102, λn

2 = 2.0 × 104, λlog
1 = 1.6 × 101, λcstr = 1.0 × 102 for 160 epochs with a learning rate of 2.5 × 10−5

169

and reduced by a factor of 0.95 every 2 epochs. During the architecture search or hyperparameter tuning, the neural170

networks were only trained for 5 epochs using the same parameters of the first stage of the training. In order to prevent171

training instability and wrong local optima, the learning rates were first warmed up for 1 × 105 steps [34, 35]. The172

mini-batch size of 256 was used for all experiments. The training time for each epoch was 50 minutes, giving a total173

training time of 5.5 days.174

3. Results and discussion175

3.1. Ablation study176

In this subsection, we will perform a so-called ablation study to investigate the effect of the network architecture and177

some of its hyperparameters on the normalised L1 error given by Eq. (2). The learning rate, batch size, and loss178

weighting parameters for the first stage of the training were obtained by performing a grid search (not shown here) for179

a fixed densely connected architecture with G = 160 and nlay = 13.180

In principle, a sufficiently deep fully connected architecture should be enough to provide good PPISCS predictions.181

However, it is known that an optimal architecture (i.e. in terms of lower number of parameters and training time)182

is data dependent. For this work, we performed the ablation study for the two most common architectures: the183

fully connected architecture and the densely connected architecture. In addition, we also compare the computational184

efficient ReLU activation function against the smooth and non-monotonic Swish activation function, which has shown185

an improvement on the accuracy for different classification tasks [36]. Figure 3(a) summarises the performance of186

the densely connected architecture against the fully connected architecture for different growth rates and activation187

functions for a fixed number of 13 layers. The results show that for a given activation function, the densely connected188

architecture outperforms the fully connected architecture and requires significantly fewer parameters and computation189

time to achieve comparable performance. The same conclusion can be drawn for the performance of the Swish190

activation function against the ReLU activation function. Moreover, large G units contribute to better performance for191

both architectures. Figure 3(b) shows the influence of the parameter nlay on the normalised L1 error for fixed G = 96.192

As expected, a deeper network improves the performance of the model by increasing the number of parameters,193

allowing the model to learn more complex features.194

We can conclude from these results that the densely connected architecture is performing best in terms of the Ln
1195

error metric. Although a densely connected architecture with (nlay = 13,G = 160) and (nlay = 19,G = 96) shows196

similar performance with approximately the same number of parameters, deeper networks take longer for the training.197

Therefore, we will use the first configuration in this work. An extra advantage of this model is that its inference time198

is of the order of 25µs on a single thread 10th Gen Intel i7 processor 4.5Ghz.199

3.2. Ln
1 error distribution200

The effect of employing a combination of loss functions capturing the relevant physical constraints of our data can201

be seen in Figure 4. This figure shows that the neural network produces nearly the same error distribution for all fcc202

crystals and zone axis orientations on the validation data. Note that loss functions based only on absolute scales of203
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PPISCSs values such as L1 and L2 would strongly depend on the atomic number. This is due to the fact that high204

atomic numbers will generate higher PPISCS values than low atomic numbers for the same fcc crystal and microscope205

settings, and thus the loss function would be biased towards high atomic numbers.206
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axis orientation.

Although the average validation error Ln
1 is small (≈ 6.0 × 10−4), all histograms show long tails independent of207

the atomic number or zone axis orientation. In order to perform a proper analysis of the Ln
1 error distribution, it is208

necessary to show the predicted PPISCSs for the average and highest errors that can be observed in these histograms.209

Figures 5 and 6 show the PPISCS-thickness predictions and ground truth for the average Ln
1 errors for all trained210

fcc crystal along the [001] and [110] zone axis orientation, respectively. These results show an excellent quantitative211

match between the ground truth and the predicted values of the PPISCSs for all cases. Moreover, the average error212

does not seem to be correlated with the input simulation parameters.213

Figures 7 and 8 show the PPISCS-thickness predictions and ground truth for the largest Ln
1 errors for all trained fcc214

crystal along the [001] and [110] zone axis orientation, respectively. These results show that even for the worst-case215

scenario, the neural network prediction only deviates from the ground truth by approximately 1% in terms of the Ln
1216

metric. A closer look at these figures reveals a correlation between the large values of Ln
1 and a smaller detector size217

(i.e. the difference between the outer and inner detector angle) of around 10mrad. This correlation arises due to the218

fact that PPISCS values calculated from smaller detector sizes are for most cases highly non-linear against thickness219
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Figure 5: Probe-position integrated scattering cross sections for different fcc crystals along the [001] zone axis as a function of the number of atoms
for different cases corresponding to an average error of the histogram shown in Fig. 4.
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Figure 6: Probe-position integrated scattering cross sections for different fcc crystals along the [110] zone axis as a function of the number of atoms
for different cases corresponding to an average error of the histogram shown in Fig. 4.

as can be seen in figure 7 and figure 8. Moreover, smaller detector sizes will also require a higher number of phonon220

configurations in order to get stable results. In principle, our model can be improved by generating new PPISCS221

values using a larger number of phonon configurations and a more powerful neural network architecture.222

The results of this section show that our neural network is able to learn the complex relationship between the input223

parameters of our simulation and the PPISCS-thickness dependence. Moreover, it is important to notice that our224

neural network runs in real time on a normal desktop computer.225

In order to demonstrate the power of our model, we will use the network to show some applications for which real-time226

PPISCS-thickness predictions are required.227

3.3. Real time applications228

Figure 9 shows the PPISCSs as a function of thickness for a broad range of specimen and microscope settings.229

In this figure, the standard settings correspond to the following input simulation parameters x = [79, 110, 200kV,230
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Figure 7: Probe-position integrated scattering cross sections for different fcc crystals along the [001] zone axis as a function of the number of atoms
for different cases corresponding to the highest error of the histogram shown in Fig. 4.
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Figure 8: Probe-position integrated scattering cross sections for different fcc crystals along the [110] zone axis as a function of the number of atoms
for different cases corresponding to the highest error in the histogram shown in Fig. 4.

0.001mm,−19.40Å, 24mrad, 45mrad, 160mrad, 0.085Å]. Next, each input simulation parameter has been varied in-231

dependently as a function of atomic element, acceleration voltage, spherical aberration, defocus, aperture angle, inner232

detector angle, outer detector angle and rmsd in panels a-h, respectively.233

The Z-contrast nature of the ADF-STEM signal for different atomic numbers can be seen in figure 9(a). Figure234

9(b) shows the breakdown in the monotonically increasing relation of PPISCS with thickness and the increase of235

non-linearity if the acceleration voltage decreases. Furthermore, only very small variations in the PPISCS-thickness236

curve with spherical aberration and defocus can be seen in figure 9(c) and in figure 9(d), respectively, as expected237

for aberration-corrected transmission electron microscopes. Figure 9(e) shows the effect the aperture angle on the238

PPISCS-thickness curve. For small thickness, the PPISCS values are almost independent of the aperture angle. How-239

ever, when the thicknesses increases, a non-linear dependence is observed. Figure 9(f) illustrates a well defined240

relationship between the PPISCS-thickness curve and inner detector angle. In particular, it is shown that the PPISCS-241

thickness values are inversely proportional to the inner angle. Figure 9(g) and figure 9(h) show the dependence of242

PPISCS-thickness curve with outer detector angle and the rmsd, respectively. Although PPISCS values mainly show243
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a non-linear dependence with thickness, this non-linearity can be decreased by increasing the outer angle or the rmsd.244
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Figure 9: Probe-position integrated scattering cross sections versus the number of atoms as a function of varying independently each of the
simulation input parameters as : (a) atomic element, (b) acceleration voltage, (c) spherical aberration, (d) defocus, (e) aperture angle, (f) inner
detector angle, (g) outer detector angle and (h) isotropic root-mean-square displacement.

Since experimental settings are only known within a certain measurement precision, the real-time PPISCS-thickness245

prediction is of great value to optimize the simulation settings by matching simulated values with the experimental246

PPISCS-thickness curve, which can be obtained by using the statistic-based atom-counting method [3]. Therefore, the247

experimental PPISCS-thickness curve together with the standard deviation on the experimentally measured parame-248

ters can be used to optimize the simulation parameters. To illustrate this, PPISCS-thickness values are considered for249

a Ag crystal along the [001] orientation and an acceleration voltage of 300kV . The ground truth input parameters have250

been chosen equal to [47, 001, 300kV, 0.0008mm, 50.00Å, 21.00mrad, 46.00mrad, 190.00mrad, 0.092Å] along with251

their standard deviation std(x) = [0, 0, 0kV, 0.001mm, 80Å, 0.25mrad, 1.0mrad, 1.0mrad, 0.003Å]. The experimen-252

tally measured parameters were randomly generated from the ground truth parameters within a range of ±std(x) and253

are equal to x = [47, 001, 300kV,−0.0006mm, 13.61Å, 20.78mrad, 45.09mrad, 189.56mrad, 0.090Å]. The PPISCS-254

thickness curve for the ground truth and the experimentally measured curve is shown in figure 9 in red and blue, respec-255

tively. Next, the input parameters have been optimized using the derivative-free Nelder-Mead simplex method [37].256

The cost function minimizes the absolute difference between the measured and predicted PPISCS-thickness curve.257

The optimisation process takes approximately one second on a normal desktop computer and yields the following esti-258

mated simulation parameters x = [47, 001, 300kV, 0.0006mm, 52.79Å, 21.00mrad, 46.01mrad, 190.44mrad, 0.092Å].259

The optimized PPISCS-thickness curve is shown in figure 10 in green. This result demonstrates that the aperture an-260

gle, inner angle and rmsd can be estimated reliably. However, the values for the spherical aberration, defocus and outer261

angle are less accurate due to the fact that the PPISCS-thickness curve is invariant for changes in those parameters as262

shown in Figure 9.263

It is known that the PPISCS-thickness curve can be used to estimate the number of atoms for zone axis oriented264

specimens. However, uncertainties in the measured microscope parameters can yield large deviations in predicted265

PPISCS values, especially at larger thicknesses. The standard deviation for each thickness can be estimated by266

taking random draws of the input parameters from a uniform distribution within their allowed measurement er-267

rors. Figure 11 shows the effect of measurement errors on the PPISCS-thickness curve for two different exam-268

ples. The input parameters are shown as an inset and the standard deviations are assumed to be equal to std(x) =269

[0, 0, 0kV, 0.001mm, 50Å, 0.25mrad, 0.5mrad, 0.5mrad, 0.0025Å]. Based on 1000 random samples for the input pa-270

rameters, the standard deviation on the PPISCS values has been calculated and is shown in blue. This figure shows a271

monotonic increase in PPISCS errors with thickness. These results demonstrate that in order to count the number of272

atoms based on the PPISCS-thickness curve, the quantification and inclusion of measurement errors in the microscope273

settings and rmsd is important.274
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Figure 11: Influence of uncertainties in the microscope parameters and rmsd on the probe-position integrated scattering cross sections.

As the last application, we show the probability of error for atom-counting from ADF STEM images for different275

fcc crystals. In order to evaluate the possibilities and limitations for atom-counting, we assess the probability to276

miscount the number of atoms as a function of a range of microscope settings and specimen parameters [38]. The277

optimal experimental design corresponds to the set of parameters for which the probability of error is minimised. The278

availability of the neural network enables us to evaluate more quickly and for a wider range of parameters. Within279

statistical detection theory, the atom-counting problem is formulated as a statistical hypothesis test, where each hy-280

pothesis corresponds to a specific number of atoms. The probability of error then corresponds to the probability to281

choose the wrong hypothesis. The decision to assign a certain observation to a specific hypothesis is taken based on282

the companion set of probability functions for the hypotheses. For ADF STEM observations, the pixel intensities283

correspond to statistically independent electron counting results which are Poisson distributed. Then, also the prob-284

ability function for the scattering cross-sections can be derived [38]. In order to illustrate the concept of the optimal285

experiment design, we computed here the probability of error evaluated for the outer detector angle, the acceleration286

voltage, the convergence angle, the thickness, the atomic number and the temperature. The probability of error for287

each case is also evaluated as a function of the inner detector radius θ0. The settings which are not varied are cho-288

sen equal to [Z = 79, zone − axis = [001],HT = 300 kV,Cs = 0.001mm,C10 = −100 Å, α = 17.5 mrad, θ0, θe =289

250 mrad, rmsd = 0.0898Å] for a thickness up to 85 atoms. The incident electron dose was chosen equal to 104 e−/Å2.290
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The results are displayed in the different panels of Figure 12. It is clear from those figures that the inner angle (a-f),291

acceleration voltage (b), thickness (d), and atomic number (e) have the largest impact on the probability of error val-292

ues. The dependence of the probability of error on the outer detector angle (a), the convergence angle (c), and the293

temperature (f) is much smaller. Therefore, the optimization of the first set of parameters will significantly enhance294

the reliability with which the number of atoms can be counted.295
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Figure 12: Probability of error for atom-counting as a function of the inner detector radius and (a) the outer detector radius, (b) the acceleration
voltage, (c) the convergence angle, (d) the thickness, (e) the atomic number, (f) the temperature.

Finally, we would like to point out that our neural network model could be improved by increasing the training296

datasets, the number of phonons for the simulations, or by using more sophisticated architectures. Additionally, the297

applicability of our network can easily be extended to more fcc crystals, zone axis orientations, and a broader range of298

microscope parameters through the use of transfer learning. Although our network takes into account specific physical299

constraints, such as the positivity of PPISCS-thickness values and the additivity constraint for contiguous detectors,300

it is essential to emphasize that the neural network’s predictions should only be trusted within the range of the input301

parameters used during training.302

The output of our network, in principle, can be compared with a subset of experimental PPISCSs obtained from quasi-303

ideal direct electron detectors. However, these detectors primarily cover low and intermediate scattering angle ranges,304

which are not fully addressed by our current network. Consequently, as a future research direction, it is possible to305

enhance the capabilities of the existing PPISCS-thickness neural network by incorporating the detector sensitivity306

map and expanding the detector value range to include ABF-STEM PPISCS-thickness values.307

Nonetheless, such an expansion poses several challenges, as it necessitates new simulations that, in principle, require308

the integration of 2D detector sensitivity maps. To directly incorporate this element, an architecture with convolutional309

layers is essential, which may hinder real-time calculations. A potential solution to this problem involves utilizing310

the radially averaged detector sensitivity map for each detector range. This map can be further compressed through311

parameterization, reducing the input parameters to the network and enabling real-time operation.312

Additionally, low-angle scattering is significantly influenced by defocus, necessitating the incorporation of temporal313

incoherence. This factor can be quantified by a single parameter, known as defocus spread, which primarily results314

from the current instability of the objective lens, the overall energy spread of the incident electron beam, and the315
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incident electron energy. By employing numerical integration, the defocus spread can be accurately accounted for,316

although at the expense of increased simulation time.317

It is important to recognize that the data generation time will considerably increase, as reliance on the additivity318

constraint for ideal contiguous detectors is no longer feasible.319

4. Conclusions320

In summary, we present a densely connected neural network that can predict real-time ADF STEM PPISCS-thickness321

values for the most common fcc crystals along their main zone axis orientations, microscope parameters, and rmsd322

values. We have shown that our architecture with 13 layers and a growth rate parameter equal to 160 is a parameter-323

efficient network and yields accurate predictions for a large range of input parameters which are commonly used for324

aberration-corrected transmission electron microscopes. We have also shown that our architecture can be used to325

estimate microscope parameters and the rmsd value of the specimen based on the PPISCS-thickness curve. More-326

over, It can also be used to estimate the uncertainty of the PPISCS-thickness values resulting from experimental327

measurement errors. The knowledge of this uncertainty will play an important role in the proper quantification328

of the number of atoms based on the PPISCS-thickness curve. The inference code for MATLAB, python and329

the tensorflow source code for training is available in the github repository https://github.com/Ivanlh20 ❤tt♣s✿330

✴✴❣✐t❤✉❜✳❝♦♠✴■✈❛♥❧❤✷✵✴❘❚❴PP■❙❈❙.331
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