toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W. pdf  url
doi  openurl
  Title (up) Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
  Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 102 Issue 102 Pages 131-136  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000355335200017 Publication Date 2015-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 41 Open Access  
  Notes This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved Most recent IF: 2.714; 2015 IF: 1.845  
  Call Number c:irua:126443 Serial 2764  
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D. pdf  doi
openurl 
  Title (up) Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
  Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 4 Pages 1780-1789  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000287265100045 Publication Date 2010-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 34 Open Access  
  Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:85533 Serial 2766  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title (up) Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
  Year 2007 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 7 Issue 12 Pages 3669-3674  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000251581600022 Publication Date 2007-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 78 Open Access  
  Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627  
  Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768  
Permanent link to this record
 

 
Author Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S. pdf  url
doi  openurl
  Title (up) Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 15 Issue 15 Pages 6634-6642  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.  
  Address EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363003100052 Publication Date 2015-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 26 Open Access OpenAccess  
  Notes This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592  
  Call Number c:irua:129423 c:irua:129423 Serial 3973  
Permanent link to this record
 

 
Author Wang, Y.; Sztranyovszky, Z.; Zilli, A.; Albrecht, W.; Bals, S.; Borri, P.; Langbein, W. url  doi
openurl 
  Title (up) Quantitatively linking morphology and optical response of individual silver nanohedra Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 30 Pages 11028-11037  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The optical response of metal nanoparticles is governed by plasmonic resonances, which are dictated by the particle morphology. A thorough understanding of the link between morphology and optical response requires quantitatively measuring optical and structural properties of the same particle. Here we present such a study, correlating electron tomography and optical micro-spectroscopy. The optical measurements determine the scattering and absorption cross-section spectra in absolute units, and electron tomography determines the 3D morphology. Numerical simulations of the spectra for the individual particle geometry, and the specific optical set-up used, allow for a quantitative comparison including the cross-section magnitude. Silver nanoparticles produced by photochemically driven colloidal synthesis, including decahedra, tetrahedra and bi-tetrahedra are investigated. A mismatch of measured and simulated spectra is found in some cases when assuming pure silver particles, which is explained by the presence of a few atomic layers of tarnish on the surface, not evident in electron tomography. The presented method tightens the link between particle morphology and optical response, supporting the predictive design of plasmonic nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000828704000001 Publication Date 2022-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 1 Open Access OpenAccess  
  Notes Z.S. acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for his Ph.D. studentship award (grant EP/R513003/1). Y.W. acknowledges Iwan Moreels (University of Ghent) for training in nanoparticle synthesis. Y.W. acknowledges the Biotechnology and Biological Sciences Research Council (BBSRC) for his Ph.D. studentship award (grant BB/L015889/1). This work was supported by the UK EPSRC (grants EP/I005072/1 and EP/M028313/1), and by the European Commission (EUSMI E191000350). W.A. acknowledges an Individual Fellowship from the Marie Skodowska-Curie actions (MSCA) under the EU's Horizon 2020 program (Grant 797153, SOPMEN). We thank Lukas Payne and Iestyn Pope for contributions to the development of the hardware and software used for the optical measurements. Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:189578 Serial 7092  
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title (up) Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
  Year 2011 Publication Optics express Abbreviated Journal Opt Express  
  Volume 19 Issue 17 Pages 15955-15964  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293894900033 Publication Date 2011-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 19 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587  
  Call Number UA @ lucian @ c:irua:92428 Serial 2776  
Permanent link to this record
 

 
Author Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B. doi  openurl
  Title (up) Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
  Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron  
  Volume 46 Issue Pages 435-444  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000174445000020 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.58; 2002 IF: 0.913  
  Call Number UA @ lucian @ c:irua:40880 Serial 2791  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title (up) Quantum transport in a nanosize double-gate metal-oxide-semiconductor field-effect transistor Type A1 Journal article
  Year 2004 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 96 Issue Pages 2305-2310  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000223055100081 Publication Date 2004-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.068; 2004 IF: 2.255  
  Call Number UA @ lucian @ c:irua:49454 Serial 2792  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title (up) Quantum transport in a nanosize silicon-on-insulator metal-oxide-semiconductor field effect transistor Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1230-1240  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180134200069 Publication Date 2003-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:40874 Serial 2793  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title (up) Quantum transport in an ultra-thin SOI MOSFET: influence of the channel thickness on the I-V characteristics Type A1 Journal article
  Year 2008 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 147 Issue 1/2 Pages 31-35  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000257220400009 Publication Date 2008-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.554; 2008 IF: 1.557  
  Call Number UA @ lucian @ c:irua:69748 Serial 2794  
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title (up) Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title (up) Quantum-size effects on T-c in superconducting nanofilms Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 76 Issue 3 Pages 498-504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000241434300022 Publication Date 2006-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:61463 Serial 2788  
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title (up) Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 199 Issue Pages 112772-112777  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000954788800001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:196106 Serial 8446  
Permanent link to this record
 

 
Author Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title (up) Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
  Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 25 Issue 3 Pages 035501-35505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000313100500010 Publication Date 2012-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223  
  Call Number UA @ lucian @ c:irua:105296 Serial 2801  
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title (up) Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue Pages 261901-261901,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285768100015 Publication Date 2010-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 23 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85759 Serial 2803  
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.L. pdf  doi
openurl 
  Title (up) R-phase structure refinement using electron diffraction data Type A1 Journal article
  Year 2002 Publication Materials transactions Abbreviated Journal Mater Trans  
  Volume 43 Issue 5 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000176212100002 Publication Date 2005-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.713 Times cited 25 Open Access  
  Notes Approved Most recent IF: 0.713; 2002 IF: 0.841  
  Call Number UA @ lucian @ c:irua:48772 Serial 2805  
Permanent link to this record
 

 
Author Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J. pdf  doi
openurl 
  Title (up) R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti50.8 at.% Ni thin wire Type A1 Journal article
  Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 72-73 Issue Pages 21-24  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A cold-drawn Ti50.8 at.% Ni wire was annealed at 600 °C for 30 min, followed by aging at 250 °C for different times. A microstructure with small grains and nanoscaled precipitates was obtained. The thermally induced martensite transformation is suppressed in the samples aged for 4 h or longer, leaving a one-stage R-phase transition between −150 and +150 °C. The transformation behavior, work output and recovery stress associated with the R-phase transition are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000329148500006 Publication Date 2013-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 27 Open Access  
  Notes Fwo Approved Most recent IF: 3.747; 2014 IF: 3.224  
  Call Number UA @ lucian @ c:irua:111847 Serial 2806  
Permanent link to this record
 

 
Author De Meulenaere, P.; Van Tendeloo, G.; van Landuyt, J.; Mommaert, C.; Severne, G. pdf  doi
openurl 
  Title (up) Radiation defects and ordered radiation patterns in Ni and Ni4Mo: a study by electron microscopy Type A1 Journal article
  Year 1993 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal  
  Volume 67 Issue 3 Pages 745-756  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1993 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:6783 Serial 2808  
Permanent link to this record
 

 
Author Berends, A.C.; Rabouw, F.T.; Spoor, F.C.M.; Bladt, E.; Grozema, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; de Donega, C.M. url  doi
openurl 
  Title (up) Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 7 Issue 7 Pages 3503-3509  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000382603300037 Publication Date 2016-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 67 Open Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ lucian @ c:irua:135715 Serial 4308  
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M. pdf  doi
openurl 
  Title (up) RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids  
  Volume 123 Issue 123 Pages 54-71  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000365367500006 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.313 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.313; 2015 IF: 1.619  
  Call Number UA @ lucian @ c:irua:130200 Serial 4236  
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P. pdf  doi
openurl 
  Title (up) Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 19 Pages 3042-3048  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000265919300024 Publication Date 2009-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 20 Open Access  
  Notes Fwo; Iwt Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:76844 Serial 2810  
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L. pdf  doi
openurl 
  Title (up) Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
  Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 10 Issue 18 Pages 3249-3259  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000273410600015 Publication Date 2009-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 56 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453  
  Call Number UA @ lucian @ c:irua:80561 Serial 2811  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F. pdf  doi
openurl 
  Title (up) Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
  Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 29 Issue 7 Pages 2124-2132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000270159200008 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 18 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.164; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:79312 Serial 2812  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title (up) Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:121239 Serial 2813  
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D. url  doi
openurl 
  Title (up) Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume Issue 94 Pages 52140-52146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344389000041 Publication Date 2014-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:119529 Serial 2814  
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.; pdf  url
doi  openurl
  Title (up) Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 187 Issue 187 Pages 161-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367235600019 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 51 Open Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ lucian @ c:irua:131096 Serial 4237  
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J.; Hamon, A.L. doi  openurl
  Title (up) Real space maps of atomic transitions Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 7 Pages 781-787  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Considering the rapid technical development of transmission electron microscopes, we investigate the possibility to map electronic transitions in real space on the atomic scale. To this purpose, we analyse the information carried by the scatterer's initial and final state wave functions and the role of the different atomic transition channels for the inelastic scattering cross section. It is shown that the change in the magnetic quantum number in the transition can be mapped. Two experimental set-ups are proposed, one blocking half the diffraction plane, the other one using a cylinder lens for imaging. Both methods break the conventional circular symmetry in the electron microscope making it possible to detect the handedness of electronic transitions as an asymmetry in the image intensity. This finding is of important for atomic resolution energy-loss magnetic chiral dichroism (EMCD), allowing to obtain the magnetic moments of single atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000266787900002 Publication Date 2009-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access  
  Notes J.V. acknowledges the FWO-Vlaanderen for support (contract no. G.0147.06) and the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:77360UA @ admin @ c:irua:77360 Serial 2829  
Permanent link to this record
 

 
Author Schattschneider, P.; Ennen, I.; Stoger-Pollach, M.; Verbeeck, J.; Mauchamp, V.; Jaouen, M. pdf  doi
openurl 
  Title (up) Real space maps of magnetic moments on the atomic scale: theory and feasibility Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 110 Issue 8 Pages 1038-1041  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recently discovered EMCD technique (energy loss magnetic chiral dichroism) can detect atom specific magnetic moments with nanometer resolution, exploiting the spin selectivity of electronic transitions in energy loss spectroscopy. Yet, direct imaging of magnetic moments on the atomic scale is not possible. In this paper we present an extension of EMCD that can overcome this limit. As a model system we chose bcc Fe. We present image simulations of the L3 white line signal, based on the kinetic equation for the density matrix of the 200 kV probe electron. With actual progress in instrumentation (high brightness sources, aberration corrected lenses) this technique should allow direct imaging of spin moments on the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000281216600016 Publication Date 2009-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access  
  Notes --- Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:84439UA @ admin @ c:irua:84439 Serial 2830  
Permanent link to this record
 

 
Author Rodewald, M.; Rodewald, K.; De Meulenaere, P.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Real-space characterization of short-range order in Cu-Pd alloys Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 55 Issue 21 Pages 14173-14181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cu-Pd alloys containing 10, 20, 30, 40, and 50 at. % Pd and quenched from a temperature just above the ordering temperature T-c are investigated by electron diffraction and high-resolution electron microscopy (HREM). The results show diffuse electron diffraction intensities at {100} and {110} positions for the alloy with 10 at. % Pd, but with a characteristic twofold and fourfold splitting for the alloys with more than 10 at. % Pd. High-resolution images show the formation of microdomains best developed between 20 and 30 at. % Pd. A real-space characterization has been performed by applying videographic real-structure simulations revealing that the splitting of the diffuse maxima depends on the average distance between microdomains of Cu3Au type in antiphase with each other. By applying image processing routines on the HREM images, correlation vectors are identified which correspond to correlations between microdomains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997XE37100036 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:21439 Serial 2828  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: