toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yorulmaz, U.; Šabani, D.; Yagmurcukardes, M.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title (up) High-throughput analysis of tetragonal transition metal Xenes Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue 48 Pages 29406-29412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report a high-throughput first-principles characterization of the structural, mechanical, electronic, and vibrational properties of tetragonal single-layer transition metal Xenes (t-TMXs). Our calculations revealed 22 dynamically, mechanically and chemically stable structures among the 96 possible free-standing layers present in the t-TMX family. As a fingerprint for their structural identification, we identified four characteristic Raman active phonon modes, namely three in-plane and one out-of-plane optical branches, with various intensities and frequencies depending on the material in question. Spin-polarized electronic calculations demonstrated that anti-ferromagnetic (AFM) metals, ferromagnetic (FM) metals, AFM semiconductors, and non-magnetic semiconductor materials exist within this family, evidencing the potential of t-TMXs for further use in multifunctional heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892446100001 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:192762 Serial 7310  
Permanent link to this record
 

 
Author Mangnus, M.J.J.; de Wit, J.W.; Vonk, S.J.W.; Geuchies, J.J.; Albrecht, W.; Bals, S.; Houtepen, A.J.; Rabouw, F.T. url  doi
openurl 
  Title (up) High-throughput characterization of single-quantum-dot emission spectra and spectral diffusion by multiparticle spectroscopy Type A1 Journal article
  Year 2023 Publication ACS Photonics Abbreviated Journal  
  Volume 10 Issue 8 Pages 2688-2698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In recent years, quantum dots (QDs) have emerged as bright,color-tunablelight sources for various applications such as light-emitting devices,lasing, and bioimaging. One important next step to advance their applicabilityis to reduce particle-to-particle variations of the emission propertiesas well as fluctuations of a single QD's emission spectrum,also known as spectral diffusion (SD). Characterizing SD is typicallyinefficient as it requires time-consuming measurements at the single-particlelevel. Here, however, we demonstrate multiparticle spectroscopy (MPS)as a high-throughput method to acquire statistically relevant informationabout both fluctuations at the single-particle level and variationsat the level of a synthesis batch. In MPS, we simultaneously measureemission spectra of many (20-100) QDs with a high time resolution.We obtain statistics on single-particle emission line broadening fora batch of traditional CdSe-based core-shell QDs and a batchof the less toxic InP-based core-shell QDs. The CdSe-basedQDs show significantly narrower homogeneous line widths, less SD,and less inhomogeneous broadening than the InP-based QDs. The timescales of SD are longer in the InP-based QDs than in the CdSe-basedQDs. Based on the distributions and correlations in single-particleproperties, we discuss the possible origins of line-width broadeningof the two types of QDs. Our experiments pave the way to large-scale,high-throughput characterization of single-QD emission propertiesand will ultimately contribute to facilitating rational design offuture QD structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009443500001 Publication Date 2023-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The electron microscopy experiments at EMAT were supported by the European Commission (EUSMI grant E210100474). Approved Most recent IF: 7; 2023 IF: 6.756  
  Call Number UA @ admin @ c:irua:197337 Serial 8879  
Permanent link to this record
 

 
Author Van der Paal, J.; Hong, S.-H.; Yusupov, M.; Gaur, N.; Oh, J.-S.; Short, R.D.; Szili, E.J.; Bogaerts, A. url  doi
openurl 
  Title (up) How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 35 Pages 19327-19341  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486175400045 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:162782 Serial 6303  
Permanent link to this record
 

 
Author Volkov, V.V.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.; Busheva, E.E.; Shabunina, G.G.; Aminov, T.G.; Novotortsev, V.M. openurl 
  Title (up) HREM image analysis up to structure determination of SbCrSe3: a new 1D ferromagnet Type A1 Journal article
  Year 1997 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 132 Issue Pages 257-266  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1997YE01700005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.299; 1997 IF: 1.486  
  Call Number UA @ lucian @ c:irua:21421 Serial 1500  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Krekels, T. doi  openurl
  Title (up) HREM of ceramic high Tc superconductors Type A1 Journal article
  Year 1996 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc  
  Volume 16 Issue Pages 367-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos A1996UC80200005 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.947 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16861 Serial 1507  
Permanent link to this record
 

 
Author Lebedev, O.I.; Caignaert, V.; Raveau, B.; Pop, N.; Gozzo, F.; Van Tendeloo, G.; Pralong, V. pdf  doi
openurl 
  Title (up) HRTEM and neutron diffraction study of LixMo5O17 : from the ribbon (x=5) structure to the rock salt (x=12) structure Type A1 Journal article
  Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 184 Issue 4 Pages 790-796  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Structure determination of the fully intercalated phase Li12Mo5O17 and of the deintercalated oxide Li5Mo5O17 has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter (closely related to that of Li4Mo5O17) is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO6 octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons. We show that the electrochemical behavior of the LixMo5O17 system is based on two sorts of Li+ sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000289597100010 Publication Date 2011-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 1 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.299; 2011 IF: 2.159  
  Call Number UA @ lucian @ c:irua:88646 Serial 1515  
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title (up) Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Van Hal, M.; Verbruggen, S.W.; Yang, X.-Y.; Lenaerts, S.; Tytgat, T. url  doi
openurl 
  Title (up) Image analysis and in situ FTIR as complementary detection tools for photocatalytic soot oxidation Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 367 Issue 367 Pages 269-277  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution, especially particulate matter (PM), is an increasingly urgent problem in urban environments, causing both short and long-term health problems, climate interference and aesthetical problems due to building fouling. Photocatalysis has been shown to be a possible solution to that end. In this work two complementary detection methods for photocatalytic soot oxidation are studied and their advantages and disadvantages are discussed. First, a colour-based digital image analysis method is drastically improved towards an accurate, detailed and straightforward detection tool, that enables simultaneous measurement of the degradation of different grades of soot fouling (for instance a shallow soot haze versus condensed soot deposits). In the next part, a second soot oxidation detection method is presented based on in situ FTIR spectroscopy. This method has the additional advantage of providing more insight into the photocatalytic soot degradation process by monitoring both gaseous and adsorbed intermediates as well as reaction products while the reactions are ongoing. As an illustration, the proposed detection strategies were applied on four different commercially available and synthesized photocatalytic materials. The digital image analysis showed that P25 (Evonik) is the fastest photocatalytic soot degrader of all studied materials for both a uniform soot haze as well as concentrated soot spots. Application of the in situ method showed that for all studied materials adsorbed formate-related surface species were formed and that commercially available ZnO nanopowder has the highest specificity towards complete mineralization into CO2. With this we aim to provide a set of complementary experimental tools for the convenient, reliable, realistic and standardised detection of photocatalytic soot degradation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461380400028 Publication Date 2019-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 1 Open Access  
  Notes ; M.V.H. acknowledges the Research Foundation-Flanders (FWO) for a doctoral fellowship. M.V.H., S.W.V., S.L. and X-Y.Y. thank the FWO and the National Natural Science Foundation of China (NSFC) for funding an international collaboration project. Mr. M. Minjauw is greatly thanked for his help in the AFM measurements. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157789 Serial 5958  
Permanent link to this record
 

 
Author Li, J.; Zhu, W.; Dong, H.; Yang, Z.; Zhang, P.; Qiang, Z. pdf  doi
openurl 
  Title (up) Impact of carrier on ammonia and organics removal from zero-discharge marine recirculating aquaculture system with sequencing batch biofilm reactor (SBBR) Type A1 Journal article
  Year 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 27 Issue 28 Pages 34614-34623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Marine recirculating aquaculture system (MRAS) is an effective technology that provides sustainable farming of food fish globally. However, dissolved organics material (chemical oxygen demand, COD) and especially ammonia are produced from uneaten feed and metabolic wastes of fish. To purify the MRAS water, this study adopted a sequencing biofilm batch reactor (SBBR) and comparatively investigated the performances of four different carriers on ammonia and COD removal. Results indicated that the NH4+-N removal rates were 0.045 +/- 0.05, 0.065 +/- 0.008, 0.089 +/- 0.005, and 0.093 +/- 0.003 kg/(m(3)center dot d), and the COD removal rates were 0.019 +/- 0.010, 0.213 +/- 0.010, 0.255 +/- 0.015, and 0.322 +/- 0.010 kg/(m(3)center dot d) in the SBBRs packed with porous plastic, bamboo ring, maifan stone, and ceramsite carriers, respectively. Among the four carriers, ceramsite exhibited the best performance for both NH4+-N (80%) and COD (33%) removal after the SBBR reached the steady-state operation conditions. For all carriers studied, the NH4+-N removal kinetics could be well simulated by the first-order model, and the NH4+-N and COD removal rates were logarithmically correlated with the carrier's specific surface area. Due to its high ammonia removal, stable performance and easy operation, the ceramsite-packed SBBR is feasible for MRAS water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565020300005 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741  
  Call Number UA @ admin @ c:irua:171932 Serial 6542  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 29 Pages 17650-17665  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477785000003 Publication Date 2019-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289  
Permanent link to this record
 

 
Author Fedina, L.; Lebedev, O.I.; Van Tendeloo, G.; van Landuyt, J. openurl 
  Title (up) In-situ HREM irradiation study of point defect clustering in strained GexSi1-x/(001)Si heterostructure Type A1 Journal article
  Year 1997 Publication Conference series of the Institute of Physics Abbreviated Journal  
  Volume 157 Issue Pages 55-58  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000071954600008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0305-2346 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21432 Serial 1578  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title (up) Inelastic electron tunneling spectroscopy of HfO2 gate stacks : a study based on first-principles modeling Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 13 Pages 132101,1-132101,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A first-principles modeling approach is used to investigate the vibrational properties of HfO2. The calculated phonon density of states is compared to experimental results obtained from inelastic electron tunneling spectroscopy (IETS) of various metal-oxide-semiconductor devices with HfO2 gate stacks. This comparison provides deep insights into the nature of the signatures of the complicated IETS spectra and provides valuable structural information about the gate stack, such as the possible presence of oxygen vacancies in jet-vapour deposited HfO2. Important structural differences between the interface of atomic-layer or molecular-beam deposited HfO2 and the Si substrate are also revealed.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295618000036 Publication Date 2011-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93611 Serial 1606  
Permanent link to this record
 

 
Author Gkanatsiou, A.; Lioutas, C.B.; Frangis, N.; Polychroniadis, E.K.; Prystawko, P.; Leszczynski, M.; Altantzis, T.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 91 Issue Pages 159-166  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract AlGaN/GaN heterostructures were grown on “on-axis” and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming

dislocation loops in the lower region. Steps aligned along [11̅00] in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an interdiffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454537700022 Publication Date 2018-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited 1 Open Access Not_Open_Access  
  Notes Funding: This work was supported by the IKY Fellowships of Excellence for Postgraduate Studies in Greece-SIEMENS Program; the Greek General Secretariat for Research and Technology, contract SAE 013/8–2009SE 01380012; and the JU ENIAC Project LAST POWER Large Area silicon carbide Substrates and heteroepitaxial GaN for POWER device applications [grant number 120218]. Also part of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a post-doctoral grant. Approved Most recent IF: 2.359  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156200 Serial 5149  
Permanent link to this record
 

 
Author Zhou, S.; Xu, W.; Xiao, Y.; Xiao, H.; Zhang, J.; Wang, Z.; He, G.; Liu, J.; Li, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Influence of neutron irradiation on X-ray diffraction, Raman spectrum and photoluminescence from pyrolytic and hot-pressed hexagonal boron nitride Type A1 Journal article
  Year 2023 Publication Journal of luminescence Abbreviated Journal  
  Volume 263 Issue Pages 120118-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hexagonal boron nitride (hBN) is considered as an ideal semiconductor material for solid-state neutron detector, owing to its large neutron scattering section because of the low atomic number of B and excellent physical properties. Here we study the influence of neutron irradiation on crystal structure and on intermediate energy state (IMES) levels induced by the presence of impurities and defects in hBN. Large-size and thick pyrolytic and hot-pressed hBN (PBN and HBN) samples, which can be directly applied for neutron detector devices, are prepared and bombarded by neutrons with different irradiation fluences. The SEM and TEM are used to observe the sample difference of PBN and HBN. X-ray diffraction and Raman spectroscopy are applied to examine the influence of neutron irradiation on lattice structures along different crystal directions of PBN and HBN samples. Photoluminescence (PL) is employed to study the effect of neutron irradiation on IMESs in these samples. We find that the neutron irradiation does not alter the in-plane lattice structures of both PBN and HBN samples, but it can release the inter-layer tensions induced by sample growth of the PBN samples. Interestingly and surprisingly, the neutron irradiation does not affect the IMES levels responsible for PL generation, where PL is attributed mainly from phonon-assisted radiative electron-hole coupling for both PBN and HBN samples. Furthermore, the results indicate that the neutron irradiation can weaken the effective carrier-phonon coupling and exciton transitions in PBN and HBN samples. Overall, both PBN and HBN samples show some degree of the resistance to neutron irradiation in terms of these basic physical properties. The interesting and important findings from this work can help us to gain an in-depth understanding of the influence of neutron irradiation on basic physical properties of hBN materials. These effects can be taken into account when designing and applying the hBN materials for neutron detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077086300001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2313 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.6; 2023 IF: 2.686  
  Call Number UA @ admin @ c:irua:200393 Serial 9047  
Permanent link to this record
 

 
Author Leoni, P.; Partoens, B.; Peeters, F.M. doi  openurl
  Title (up) Influence of strain on the Stark effect in InP/GaInP quantum discs Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 26 Issue Pages 312-316  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000227249000065 Publication Date 2004-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:62429 Serial 1636  
Permanent link to this record
 

 
Author Rossi, E.H.M.; Van Tendeloo, G.; Rosenauer, A. doi  openurl
  Title (up) Influence of strain, specimen orientation and background estimation on composition evaluation of InAs/GaAs by TEM Type A1 Journal article
  Year 2007 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 87 Issue 29 Pages 4461-4473  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000249890700003 Publication Date 2007-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.505; 2007 IF: 1.486  
  Call Number UA @ lucian @ c:irua:66612 Serial 1638  
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J. url  doi
openurl 
  Title (up) Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 5 Pages 055001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588209300001 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access OpenAccess  
  Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:173679 Serial 6545  
Permanent link to this record
 

 
Author Dubois, M.; Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Vanderreydt, I. doi  openurl
  Title (up) Innovative market-based policy instruments for waste management : a case study on shredder residues in Belgium Type A1 Journal article
  Year 2015 Publication Waste Management & Research Abbreviated Journal Waste Manage Res  
  Volume 33 Issue 10 Pages 886-893  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361818000004 Publication Date 2015-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-242x; 1096-3669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.803 Times cited 1 Open Access  
  Notes ; The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research has been funded by the Flemish Government through the policy research centres programme. ; Approved Most recent IF: 1.803; 2015 IF: 1.297  
  Call Number UA @ admin @ c:irua:129876 Serial 6217  
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K. url  doi
openurl 
  Title (up) Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
  Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun  
  Volume 117 Issue Pages 106767-5  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552618700004 Publication Date 2020-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited 1 Open Access  
  Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396  
  Call Number UA @ admin @ c:irua:169924 Serial 6547  
Permanent link to this record
 

 
Author Hernandez Parrodi, J.C.; Lucas, H.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; Krook, J.; Svensson, N.; Van Passel, S. url  doi
openurl 
  Title (up) Integration of resource recovery into current waste management through (enhanced) landfill mining Type A1 Journal article
  Year 2019 Publication Detritus Abbreviated Journal  
  Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimated 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 1999/31/EC. These older landfills tend to be filled with municipal solid waste and often lack any environmental protection technology. “ Doing nothing”, state-of-theart aftercare or remediating them depends largely on technical, societal and economic conditions which vary between countries. Beside “ doing nothing' and landfill aftercare, there are different scenarios in landfill mining, from re-landfilling the waste into ”sanitary landfills" to seizing the opportunity for a combined resource-recovery and remediation strategy. This review article addresses present and future issues and potential opportunities for landfill mining as an embedded strategy in current waste management systems through a multi-disciplinary approach. In particular, three general landfill mining strategies are addressed with varying extents of resource recovery. These are discussed in relation to the main targets of landfill mining: (i) reduction of the landfill volume (technical), (ii) reduction of risks and impacts (environmental) and (iii) increase in resource recovery and overall profitability (economic). Geophysical methods could be used to determine the characteristics of the landfilled waste and subsurface structures without the need of an invasive exploration, which could greatly reduce exploration costs and time, as well as be useful to develop a procedure to either discard or select the most appropriate sites for (E)LFM. Material and energy recovery from land-filled waste can be achieved through mechanical processing coupled with thermochemical valorization technologies and residues upcycling techniques. Gasification could enable the upcycling of residues after thermal treatment into a new range of eco-friendly construction materials based on inorganic polymers and glass-ceramics. The multi-criteria assessment is directly influenced by waste- and technology related factors, which together with site-specific conditions, market and regulatory aspects, influence the environmental, economic and societal impacts of (E)LFM projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000504065300012 Publication Date 2019-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This research has been funded by the European Union ' s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721185 “NEW-MINE” (EU Training Network for Resource Recovery through Enhanced Landfill Mining; www.new-mine.eu). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165759 Serial 6219  
Permanent link to this record
 

 
Author Zhou, R.; Neek-Amal, M.; Peeters, F.M.; Bai, B.; Sun, C. url  doi
openurl 
  Title (up) Interlink between Abnormal Water Imbibition in Hydrophilic and Rapid Flow in Hydrophobic Nanochannels Type A1 Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 18 Pages 184001  
  Keywords A1 Journal Article; CMT  
  Abstract Nanoscale extension and refinement of the Lucas-Washburn model is presented with a detailed analysis of recent experimental data and extensive molecular dynamics simulations to investigate rapid water flow and water imbibition within nanocapillaries. Through a comparative analysis of capillary rise in hydrophilic nanochannels, an unexpected reversal of the anticipated trend, with an abnormal peak, of imbibition length below the size of 3 nm was discovered in hydrophilic nanochannels, surprisingly sharing the same physical origin as the well-known peak observed in flow rate within hydrophobic nanochannels. The extended imbibition model is applicable across diverse spatiotemporal scales and validated against simulation results and existing experimental data for both hydrophilic and hydrophobic  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.6 Times cited 1 Open Access  
  Notes We gratefully acknowledge the financial support pro- vided by the National Natural Science Foundation of China (Projects No. 52488201 and No. 52222606). Part of this project was supported by the Flemish Science Foundations (FWO-Vl) and the Iranian National Science Foundation (No. 4025061 and No. 4021261). Approved Most recent IF: 8.6; 2024 IF: 8.462  
  Call Number UA @ lucian @ Serial 9122  
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Strasser, G.; de Meester, R.; Peeters, F.M.; Wacker, A. doi  openurl
  Title (up) Interminiband spectroscopy of biased superlattices Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 7 Issue Pages 274-278  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000086076800059 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34357 Serial 1699  
Permanent link to this record
 

 
Author Schryvers, D.; Goessens, C.; Safran, G.; Toth, L. pdf  doi
openurl 
  Title (up) Internal calibration technique for HREM studies of nanoscale particles Type A1 Journal article
  Year 1993 Publication Microscopy research and technique T2 – JOINT MEETING OF DUTCH SOC FOR ELECTRON MICROSCOPY / BELGIAN SOC FOR, ELECTRON MICROSCOPY / BELGIAN SOC FOR CELL BIOLOGY, DEC 10-11, 1992, ANTWERP, BELGIUM Abbreviated Journal Microsc Res Techniq  
  Volume 25 Issue 2 Pages 185-186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1993LB60700015 Publication Date 2005-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910X;1097-0029; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.154 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104488 Serial 1700  
Permanent link to this record
 

 
Author de Meester, R.H.J.; Peeters, F.M.; Lakrimi, M.; Nicholas, R.J.; Poulter, A.J.L.; Mason, N.J.; Walker, P.J. openurl 
  Title (up) Intersubband transitions in InAs/GaSb superlattices in a parallel magnetic field Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 7 Issue Pages 93-96  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000086076800021 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34358 Serial 1714  
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R. pdf  doi
openurl 
  Title (up) Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 21 Pages 9683-9689  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102148900001 Publication Date 2023-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.8 Times cited 1 Open Access  
  Notes Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number UA @ admin @ c:irua:201200 Serial 9052  
Permanent link to this record
 

 
Author Dunin-Borkowski, R.E.; Lichte, H.; Tillmann, K.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title (up) Introduction to a special issue in honour of W. Owen Saxton, David J. Smith and Dirk Van Dyck on the occasion of their 65th birthdays Type Editorial
  Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 134 Issue Pages 1-1  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000324474900001 Publication Date 2013-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:109917 Serial 1721  
Permanent link to this record
 

 
Author Pramanik, G.; Kvakova, K.; Thottappali, M.A.; Rais, D.; Pfleger, J.; Greben, M.; El-Zoka, A.; Bals, S.; Dracinsky, M.; Valenta, J.; Cigler, P. url  doi
openurl 
  Title (up) Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 23 Pages 10462-10467  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin-orbit coupling, which in turn shortens the fluorescence decay lifetime (tau(PL)). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased tau(PL) upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in tau(PL) is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657052500001 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge support from GACR project no. 18-12533S. G. P. acknowledges support from EUSMI project no. E180200060; J. P. from the Ministry of Education, Youth and Sports of the Czech Republic – Program INTER-EXCELLENCE (LTAUSA19066). Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:179052 Serial 6843  
Permanent link to this record
 

 
Author Kalitzova, M.; Peeva, A.; Ignatova, V.; Lebedev, O.I.; Zollo, G.; Vitali, G. pdf  doi
openurl 
  Title (up) Ion beam synthesis of Te and Bi nanoclusters in silicon: the effect of post-implantation high frequency electromagnetic field Type A1 Journal article
  Year 2006 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 242 Issue Pages 209-213  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236225200056 Publication Date 2005-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.109; 2006 IF: 0.946  
  Call Number UA @ lucian @ c:irua:58051 Serial 1741  
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title (up) Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J. pdf  url
doi  openurl
  Title (up) Low-cost electron detector for scanning electron microscope Type A1 Journal article
  Year 2023 Publication HardwareX Abbreviated Journal HardwareX  
  Volume 14 Issue Pages e00413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001042486000001 Publication Date 2023-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:195886 Serial 7252  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: