toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title (up) Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 15 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Krupińska, B.; Worobiec, A.; Rotondo, G.G.; Novaković, V.; Kontozova, V.; Ro, C.-U.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title (up) Assessment of the air quality (NO2, SO2, O3 and particulate matter) in the Plantin-Moretus Museum/Print Room in Antwerp, Belgium, in different seasons of the year Type A1 Journal article
  Year 2012 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 102 Issue 1 Pages 49-53  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The Plantin-Moretus Museum/Print Room in Antwerp, Belgium, gathers one of the most precious collections of typographical material and old printed books in the world. Rich decorations of this former printing-house and the history of the building itself underline its uniqueness. The cultural heritage (CH) objects collected in the museum, in particular books and manuscripts are vulnerable to the atmospheric pollution and can be irreversibly damaged. To assess the air quality inside the museum, four consecutive sampling campaigns were performed in each season of the year. The gas monitoring of nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) was carried out outside the building, in galleries and in showcases by means of using diffusive samplers. The particulate matter (PM) was collected in bulk form and as single particles and then analysed with use of energy dispersive X-ray fluorescence (EDXRF) and electron probe micro-analyser (EPMA), respectively. The museum complex turned out to show good protection against gaseous pollutants, especially SO2 and O3. The concentrations of these pollutants were significantly reduced inside the building in comparison to the outdoor ones. Similar protective character of the museum complex was established in case of the coarse fraction of PM; however with some limitations. Single particle analysis showed that the relative abundance of carbon-rich particles inside the museum was greater than outside. Moreover, these particles contributed more to the fine fraction of PM than to the coarse fraction. Therefore, for better preservation of cultural heritage, special attention should be paid to the small particles and their distribution within the museum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301559100007 Publication Date 2011-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 25 Open Access  
  Notes ; The presented work was realised in the frame of the project Preventive conservation/preservation in the museum Plantin-Moretus/Prentenkabinet, Antwerp, financed by the Flemish Government. Special thanks are due to Mrs Hanne Moris and Mrs Elke van Herck and all the staff of the Museum Plantin-Moretus/Print Room in Antwerp for their sincere interest in this work and their eager assistance during all the sampling campaigns. Barbara Krupinska is supported as PhD student by the Flemish Fund for Scientific Research (FWO, Belgium). ; Approved Most recent IF: 3.034; 2012 IF: 2.879  
  Call Number UA @ admin @ c:irua:94466 Serial 5483  
Permanent link to this record
 

 
Author Injuk, J.; Van Grieken, R. doi  openurl
  Title (up) Atmospheric concentrations and deposition of heavy metals over the North Sea: a literature review Type A1 Journal article
  Year 1995 Publication Journal of atmospheric chemistry Abbreviated Journal  
  Volume 20 Issue Pages 179-212  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995RJ26500004 Publication Date 2004-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-7764 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:12348 Serial 7519  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Van Aert, S. pdf  openurl
  Title (up) Atomen in 3D : Antwerpenaren brengen atomaire structuur nanodeeltjes in beeld Type Newspaper/Magazine/blog article
  Year 2011 Publication Chemie magazine Abbreviated Journal  
  Volume 7 Issue 3 Pages 9  
  Keywords Newspaper/Magazine/blog article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0379-7651 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94122 Serial 163  
Permanent link to this record
 

 
Author Cui, W.; Hu, Z.-Y.; Unocic, R.R.; Van Tendeloo, G.; Sang, X. pdf  url
doi  openurl
  Title (up) Atomic defects, functional groups and properties in MXenes Type A1 Journal article
  Year 2021 Publication Chinese Chemical Letters Abbreviated Journal Chinese Chem Lett  
  Volume 32 Issue 1 Pages 339-344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract MXenes, a new family of functional two-dimensional (2D) materials, have shown great potential for an extensive variety of applications within the last decade. Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties. In this review, we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes, and how to control them to directly influence various properties (e.g., electron transport, Li' adsorption, hydrogen evolution reaction (HER) activity, and magnetism) of 2D MXenes materials. Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed. The review thus provides perspectives on property optimization through atomic defect engineering, and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618541800057 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1001-8417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.932 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.932  
  Call Number UA @ admin @ c:irua:177568 Serial 6777  
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. doi  openurl
  Title (up) Atomic layer deposition of ruthenium on a titanium nitride surface : a density functional theory study Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 38 Pages 19442-19453  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of its excellent properties in nanotechnology applications, atomic layer deposition of ruthenium (Ru) has been the subject of numerous experimental studies. Recently, two different Ru precursors were compared for plasma-enhanced atomic layer deposition (PEALD) of Ru, and their reactivity was found to be different. Inhibition was observed for bis(ethylcyclopentadienyl)ruthenium (Ru(EtCp)(2)), while nearly linear growth behavior was observed for (methylcyclopentadienyl-pyrrolyl)ruthenium (Ru(MeCp)Py). To understand this difference in reactivity, we investigate the adsorption of RuCp, and RuCpPy (i.e., without substituents) on a TiN surface using calculations based on periodic boundary conditions density functional theory (DFT) combined with experiments based on Rutherford backscattering spectroscopy (RBS). The calculations demonstrate that the RuCpPy precursor chemisorbs on the TiN(100) surface while the RuCp2 precursor only physisorbs. We propose a reaction mechanism for the chemisorption of RuCpPy. The area density of the calculated RuCpPy surface species is compared with the experimental values from RBS. The impact of a H-plasma is also investigated. The DFT calculations and experimental results from RBS provide insight into the adsorption processes of the RuCpPy and RuCp2 precursors on the TiN(100) surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000330162500022 Publication Date 2013-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:114855 Serial 170  
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A. doi  openurl
  Title (up) Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 6592-6603  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000351970800015 Publication Date 2015-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 10 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:125544 Serial 171  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title (up) Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author Markowicz, A.A.; Van Grieken, R.E. doi  openurl
  Title (up) Atomic number correction in electron probe X-ray microanalysis of curved samples and particles Type A1 Journal article
  Year 1984 Publication Analytical chemistry Abbreviated Journal  
  Volume 56 Issue 14 Pages 2798-2801  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1984TU34600040 Publication Date 2005-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116519 Serial 7535  
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P. pdf  doi
openurl 
  Title (up) Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 42 Pages 20412-20418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000296205600009 Publication Date 2011-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 31 Open Access  
  Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91890 Serial 174  
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A. pdf  doi
openurl 
  Title (up) Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 10 Pages 1904-1909  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000304237500024 Publication Date 2012-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy Type A1 Journal article
  Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 85 Issue 2 Pages 670-704  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000313668400013 Publication Date 2012-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 29 Open Access  
  Notes Approved Most recent IF: 6.32; 2013 IF: 5.825  
  Call Number UA @ lucian @ c:irua:104719 Serial 190  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy Type A1 Journal article
  Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 80 Issue 12 Pages 4317-4347  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000256763400006 Publication Date 2008-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 53 Open Access  
  Notes Approved Most recent IF: 6.32; 2008 IF: 5.712  
  Call Number UA @ lucian @ c:irua:69437 Serial 191  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy Type A1 Journal article
  Year 2006 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 78 Issue 12 Pages 3917-3945  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000238252600007 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 112 Open Access  
  Notes Approved Most recent IF: 6.32; 2006 IF: 5.646  
  Call Number UA @ lucian @ c:irua:60058 Serial 192  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy Type A1 Journal article
  Year 2004 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 76 Issue 12 Pages 3313-3336  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000222011100006 Publication Date 2004-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 32 Open Access  
  Notes Approved Most recent IF: 6.32; 2004 IF: 5.450  
  Call Number UA @ lucian @ c:irua:46258 Serial 193  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy Type A1 Journal article
  Year 2002 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 74 Issue 12 Pages 2691-2712  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000176253700006 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 18 Open Access  
  Notes Approved Most recent IF: 6.32; 2002 IF: 5.094  
  Call Number UA @ lucian @ c:irua:40192 Serial 194  
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title (up) Atomic spectroscopy: a review Type A1 Journal article
  Year 2010 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 82 Issue 12 Pages 4653-4681  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000278616100001 Publication Date 2010-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 65 Open Access  
  Notes Approved Most recent IF: 6.32; 2010 IF: 5.874  
  Call Number UA @ lucian @ c:irua:82675 Serial 195  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title (up) Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. url  doi
openurl 
  Title (up) Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 8 Issue 10 Pages 7160-7168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411730500055 Publication Date 2017-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 3 Open Access OpenAccess  
  Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668  
  Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title (up) Atomistic simulations of plasma catalytic processes Type A1 Journal article
  Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 12 Issue 1 Pages 145-154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425156500017 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ lucian @ c:irua:149233 Serial 4927  
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Meynen, V.; Dewilde, S.; De Wael, K. url  doi
openurl 
  Title (up) Attaching redox proteins onto electrode surfaces by bis-silane Type A1 Journal article
  Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem  
  Volume 3 Issue 7 Pages 1035-1038  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Immobilization of redox proteins on electrode surfaces is of special interest for mechanistic studies and applications because of a well-controlled redox state of protein molecules by a polarized electrode and fast electron transfer kinetics, free from diffusion limitation. Here, bis-organosilane (1,2-bis(trimethoxysilyl)ethane) was applied as a fresh solution in a pH 7 phosphate buffer without use of any organic solvent, sol-gel or mesoporous bulk matrix. A short aging period of 30 minutes before deposition on the electrodes was optimal for the immobilization of proteins. Three redox proteins (cytochrome c, neuroglobin and GLB-12) were confined to the gold surface of electrodes with high coverages and stability, indicating that the suggested technique is simple, efficient and generic in nature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380043500001 Publication Date 2016-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited 4 Open Access  
  Notes ; The authors thank the Fund for Scientific Research-Flanders (FWO) (Grant G.0687.13) and the GOA-BOF UA 2013-2016 (project ID 28312) for funding. ; Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:132628 Serial 5485  
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title (up) Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 4 Issue 13 Pages 2209-2216  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000321809500018 Publication Date 2013-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 131 Open Access  
  Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687  
  Call Number UA @ lucian @ c:irua:109811 Serial 204  
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title (up) Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
  Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 12 Pages 1876-1887  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000289644300004 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 75 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049  
  Call Number UA @ lucian @ c:irua:88644 Serial 205  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title (up) Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized Zeolite Imidazolate Frameworks, ZIFs Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 23 Pages 6393-6401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The selective formation and stabilization of very small, naked metal particles inside the cavities of metal organic frameworks (MOFs) and the simultaneous realization of an even distribution of the particles throughout the crystalline MOF host matrix over a wide range of metal loading are challenging goals. MOFs reveal high specific surface areas, tunable pore sizes, and organic linkers, which are able to interact with guests. The chemically very robust zeolite imidazolate frameworks (ZIFs) are a subclass of MOFs. We chose the microporous sodalite-like ZIF-8 (Zn(MelM)(2); IM = imidazolate) and ZIF-90 (Zn(ICA)(2); ICA = imidazolate-2-carboxyaldehyde) as host matrices to influence the dispersion of imbedded gold nanoparticles (Au NPs). The metal loading was achieved via gas phase infiltration of [Au(CO)Cl] followed by a thermal hydrogenation step to form the Au NPs. Low-dose high-resolution transmission electron microscopy ((HR)TEM) and electron tomography reveal a homogeneous distribution of Au NPs throughout the ZIF matrix. The functional groups of ZIF-90 direct the anchoring of intermediate Au species and stabilize drastically smaller and quite monodisperse Au NPs in contrast to the parent not functionalized ZIF-8. The particles can be very small, match the cavity size and approach defined molecular clusters of magic numbers, i.e., Au(55), independently from the level of loading. Post-synthetic oxidation of the aldehyde groups to yield alkyl esters by the adjacent, catalytically active metal NPs is presented as a new concept of encapsulating nanoparticles inside MOFs and allows multiple steps of metal loadings without decomposition of the MOF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000284975100025 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 194 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:95530 Serial 208  
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title (up) AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 5.317  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Gregory, C.L.; Nullens, H.A.; Gijbels, R.H.; van Espen, P.J.; Geuens, I.; de Keyzer, R. doi  openurl
  Title (up) Automated particle analysis of populations of silver halide microcrystals by electron probe microanalysis under cryogenic conditions Type A1 Journal article
  Year 1998 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 70 Issue Pages 2551-2559  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000074584700047 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 12 Open Access  
  Notes Approved Most recent IF: 6.32; 1998 IF: 4.580  
  Call Number UA @ lucian @ c:irua:21308 Serial 210  
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
  Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.  
  Volume 25 Issue 24 Pages 10485-10497  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110100100001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.8 Times cited Open Access  
  Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved Most recent IF: 9.8; 2023 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978  
Permanent link to this record
 

 
Author Fedotov, S.S.; Khasanova, N.R.; Samarin, A.S.; Drozhzhin, O.A.; Batuk, D.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. pdf  url
doi  openurl
  Title (up) AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 411-415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel potassium-based fluoride-phosphate, KVPO4F, with a KTiOPO4 (KTP) type structure is synthesized and characterized. About 85% of potassium has been electrochemically extracted on oxidation producing a cathode material with attractive performance for Li-ion batteries. The material operates at the electrode potential near 4V vs Li/Li+ exhibiting a sloping voltage profile, extremely low polarization, small volume change of about 2% and excellent rate capability, maintaining more than 75% of the initial capacity at 40C discharge rate without significant fading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368949900002 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes The authors kindly thank Dr. S. N. Putilin for XRD measurements, Dr. O. A. Shlyakhtin for the assistance in cryochemical synthesis, Ph.D. students A. A. Sadovnikov and E. A. Karpukhina for SEM imaging and FTIR spectra respectively. The work was partly supported by Russian Science Foundation (grant 16-19-00190), Skoltech Center for Electrochemical Energy Storage and Moscow State University Devel-opment Program up to 2020. J. Hadermann, O.M. Karakulina and A.M. Abakumov acknowledge support from FWO under grant G040116N. Approved Most recent IF: 9.466  
  Call Number c:irua:131583 Serial 4001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: