toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T.
  Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
  Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun
  Volume 98 Issue Pages 1091
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos A1996UT02900012 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.897 Times cited (down) 11 Open Access
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:16186 Serial 3115
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M.
  Title Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
  Year 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
  Volume 79 Issue 4 Pages 041406,1-041406,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000265941300077 Publication Date 2009-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 2.366; 2009 IF: 2.400
  Call Number UA @ lucian @ c:irua:77021 Serial 3308
Permanent link to this record
 

 
Author Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Hörmann, U.; Van Tendeloo, G.; Mlayah, A.; Murray, D.B.; Saviot, L.; Zhou, Y.; Hong, M.H.; Luk'yanchuk, B.S.
  Title Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metaldielectric nanocomposites Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 19 Issue 37 Pages 375701,1-375701,4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000258385600018 Publication Date 2008-08-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446
  Call Number UA @ lucian @ c:irua:81873 Serial 3396
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J.
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
  Volume 71 Issue 71 Pages 127-143
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000352166500002 Publication Date 2015-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.032 Times cited (down) 11 Open Access
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA
  Call Number c:irua:124411 Serial 3408
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y.
  Title Mg8Rh4B: a new type of boron stabilized Ti2Ni structure Type A1 Journal article
  Year 2006 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 179 Issue 9 Pages 2751-2761
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000240157400004 Publication Date 2006-01-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 2.299; 2006 IF: 2.107
  Call Number UA @ lucian @ c:irua:60810 Serial 3544
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G.
  Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 17 Issue 11 Pages 3004-3011
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000229656000030 Publication Date 2005-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
  Call Number UA @ lucian @ c:irua:59053 Serial 3554
Permanent link to this record
 

 
Author Ball, J.M.; Schryvers, D.
  Title The analysis of macrotwins in NiAl martensite Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv
  Volume 112 Issue Part 1 Pages 159-162
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Les Ulis Editor
  Language Wos 000186503200024 Publication Date 2008-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (down) 11 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:103275 Serial 3569
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Gyorgy, E.; Luches, A.; Martino, M.; Nistor, L.C.; van Landuyt, J.; Hermann, J.
  Title The study of a crater forming on the surface of a Ti target submitted to multipulse excimer laser irradiation under low pressure N2 Type A1 Journal article
  Year 1996 Publication Journal of modern optics Abbreviated Journal J Mod Optic
  Volume 43 Issue 9 Pages 1773-1784
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A Ti target was submitted to laser ablation in low ambient pressure N-2. Electron microscopy examination of the cross-section of the crater zone forming on the Ti target, and XPS analyses, indicate that there is a small effect on the nitridation processes taking place on and in the vicinity of the target. The studies show a zone influenced by the multipulse laser treatment extending beneath the crater down to a depth of the same order of magnitude as the crater depth (i.e. similar to 10 mu m). In this zone, TiN could be identified as being present only in traces, while the whole zone exhibited a layer structure with differences in morphology and mechanical wear.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1996VF31900002 Publication Date 2007-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0950-0340;1362-3044; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.008 Times cited (down) 11 Open Access
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #
  Call Number UA @ lucian @ c:irua:95238 Serial 3594
Permanent link to this record
 

 
Author Lucena, D.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.
  Title Tunable diffusion of magnetic particles in a quasi-one-dimensional channel Type A1 Journal article
  Year 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
  Volume 87 Issue 1 Pages 012307-12309
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field. DOI: 10.1103/PhysRevE.87.012307
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
  Language Wos 000314152300005 Publication Date 2013-01-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (down) 11 Open Access
  Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, the collaborative program CNPq – FWO-Vl, and the Brazilian program Science Without Borders (CsF). Discussions with V. R. Misko are gratefully acknowledged. ; Approved Most recent IF: 2.366; 2013 IF: 2.326
  Call Number UA @ lucian @ c:irua:110089 Serial 3739
Permanent link to this record
 

 
Author Lepoittevin, C.; Hadermann, J.; Malo, S.; Pérez, O.; Van Tendeloo, G.; Hervieu, M.
  Title Two variants of the 1/2[110]p(203)p crystallographic shear structures: the phasoid Sr0.61Pb0.18(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 48 Issue 17 Pages 8257-8262
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract For the composition (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, a new modulated crystallographic shear structure, related to perovskite, has been synthesized and structurally characterized by transmission electron microscopy. The structure can be described using a monoclinic supercell with cell parameters am = 27.595(2) Å, bm = 3.8786(2) Å, cm = 13.3453(9) Å, and βm = 100.126(5)°, refined from powder X-ray diffraction data. The incommensurate crystallographic shear phases require an alternative approach using the superspace formalism. This allows a unified description of the incommensurate phases from a monoclinically distorted perovskite unit cell and a modulation wave vector. The structure deduced from the high-resolution transmission electron microscopy and high-angle annular dark-field−scanning transmission electron microscopy images is that of a 1/2[110]p(203)p crystallographic shear structure. The structure follows the concept of a phasoid, with two coexisting variants with the same unit cell. The difference is situated at the translational interface, with the local formation of double (phase 2) or single (phase 1) tunnels, where the Pb cations are likely located.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000269313500032 Publication Date 2009-07-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited (down) 11 Open Access
  Notes Esteem 026019 Approved Most recent IF: 4.857; 2009 IF: 4.657
  Call Number UA @ lucian @ c:irua:78482 Serial 3786
Permanent link to this record
 

 
Author van den Heuvel, W.; Tikhomirov, V.K.; Kirilenko, D.; Schildermans, N.; Chibotaru, L.F.; Vanacken, J.; Gredin, P.; Mortier, M.; Van Tendeloo, G.; Moshchalkov, V.V.
  Title Ultralow blocking temperature and breakdown of the giant spin model in Er3+-doped nanoparticles Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue 9 Pages 094421-094421,8
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The magnetization of luminescent Er3+-doped PbF2 nanoparticles (formula Er0.3Pb0.7F2.3) has been studied. Despite the high concentration of the doping Er3+ ions and relatively large size (8 nm) of these nanoparticles we have found no deviation between field-cooled and zero-field-cooled magnetization curves down to T=0.35 K, which points out an ultralow blocking temperature for the reversal of magnetization. We also have found strongly deviating magnetization curves M(H/T) for different temperatures T. These results altogether show that the investigated nanoparticles are not superparamagnetic, but rather each Er3+ ion in these nanoparticles is found in a paramagnetic state down to very low temperatures, which implies the breakdown of the Néel-Brown giant spin model in the case of these nanoparticles. Calculations of magnetization within a paramagnetic model of noninteracting Er3+ ions completely support this conclusion. Due to the ultralow blocking temperature, these nanoparticles have a potential for magnetic field-induced nanoscale refrigeration with an option of their optical localization and temperature control.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000281773300005 Publication Date 2010-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:85423 Serial 3796
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 49 Issue 49 Pages 054002
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000368944100003 Publication Date 2015-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited (down) 11 Open Access
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588
  Call Number c:irua:131571 Serial 3985
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G.
  Title Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101 Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
  Volume 33 Issue 33 Pages 382-387
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract MIL-101 giant-pore metal-organic framework (MOF) materials have been loaded with Pt nanoparticles using atomic layer deposition. The final structure has been investigated by aberration-corrected annular dark-field scanning transmission electron microscopy under strictly controlled low dose conditions. By combining the acquired experimental data with image simulations, the position of the small clusters within the individual pores of a metal-organic framework has been determined. The embedding of the Pt nanoparticles is confirmed by electron tomography, which shows a distinct ordering of the highly uniform Pt nanoparticles. The results show that atomic layer deposition is particularly well-suited for the deposition of individual nanoparticles inside MOF framework pores and that, upon proper regulation of the incident electron dose, annular dark-field scanning transmission electron microscopy is a powerful tool for the characterization of this type of materials at a local scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000379970000006 Publication Date 2016-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.474 Times cited (down) 11 Open Access
  Notes S.T. and J.D. gratefully acknowledge the FWO Vlaanderen for a postdoctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. K.L. acknowledges the financial support from the Ghent University BOF postdoctoral Grant 01P06813T and UGent GOA Grant 01G00710. C.D. thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513), and the Hercules Foundation (AUGE/09/014) for financial support. Approved Most recent IF: 4.474
  Call Number c:irua:131913 Serial 4028
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K.
  Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
  Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume 64 Issue 64 Pages 163-168
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000374608100020 Publication Date 2016-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.561 Times cited (down) 11 Open Access
  Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561
  Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091
Permanent link to this record
 

 
Author Spadaro, M.C.; Luches, P.; Bertoni, G.; Grillo, V.; Turner, S.; Van Tendeloo, G.; Valeri, S.; D'Addato, S.
  Title Influence of defect distribution on the reducibility of CeO2-x nanoparticles Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 27 Issue 27 Pages 425705
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ceria nanoparticles (NPs) are fundamental in heterogeneous catalysis because of their ability to store or release oxygen depending on the ambient conditions. Their oxygen storage capacity is strictly related to the exposed planes, crystallinity, density and distribution of defects. In this work a study of ceria NPs produced with a ligand-free, physical synthesis method is presented. The NP films were grown by a magnetron sputtering based gas aggregation source and studied by high resolution- and scanning-transmission electron microscopy and x-ray photoelectron spectroscopy. In particular, the influence of the oxidation procedure on the NP reducibility has been investigated. The different reducibility has been correlated to the exposed planes, crystallinity and density and distribution of structural defects. The results obtained in this work represent a basis to obtain cerium oxide NP with desired oxygen transport properties.
  Address Dipartimento FIM, Universita di Modena e Reggio Emilia, via G. Campi 213/a, I-41125 Modena, Italy. CNR-NANO, via G. Campi 213/a, I-41125 Modena, Italy
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000385483900004 Publication Date 2016-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited (down) 11 Open Access
  Notes The authors gratefully acknowledge financial support by the Italian MIUR under grant FIRB RBAP115AYN (Oxides at the nanoscale: multifunctionality and applications). The activity is performed within the COST Action CM1104 'Reducible oxide chemistry, structure and functions'. The research leading to these results has received funding also from the European Union Seventh Framework Programme under Grant Agreement 312483—ESTEEM2 (Integrated Infrastructure Initiative–I3).; esteem2_ta Approved Most recent IF: 3.44
  Call Number EMAT @ emat @ c:irua:135424 Serial 4130
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.;
  Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 7 Issue 7 Pages 17109-17115
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited (down) 11 Open Access
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394
  Call Number UA @ lucian @ c:irua:129434 Serial 4175
Permanent link to this record
 

 
Author da Costa; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.; Farias, G.A.; Peeters, F.M.
  Title Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 94 Issue 94 Pages 035415
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000379502200008 Publication Date 2016-07-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas No. 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation, under the process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, the Brazilian Program Science Without Borders (CsF), and the Lemann Foundation. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:134947 Serial 4190
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
  Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 92 Issue 92 Pages 094516
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000362081000002 Publication Date 2015-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:132467 Serial 4203
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
  Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 3 Issue 3 Pages 19754-19764
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000362041300018 Publication Date 2015-08-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
  Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P.
  Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
  Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int
  Volume 42 Issue 42 Pages 5382-5390
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Barking Editor
  Language Wos 000369460500098 Publication Date 2015-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.986 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 2.986
  Call Number UA @ lucian @ c:irua:132228 Serial 4260
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
  Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 115423
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000372409900006 Publication Date 2016-03-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:133197 Serial 4267
Permanent link to this record
 

 
Author Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A.
  Title Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
  Volume 29 Issue 29 Pages 3081-3086
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000390030600016 Publication Date 2016-08-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.18 Times cited (down) 11 Open Access
  Notes ; We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milosevic acknowledges support from Research Foundation – Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
  Call Number UA @ lucian @ c:irua:140347 Serial 4461
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M.
  Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume Issue Pages 115415
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000254542800167 Publication Date 2008-03-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:104033 Serial 4517
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
  Title Graphene membrane as a pressure gauge Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 111 Issue 4 Pages 043101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000406779700035 Publication Date 2017-07-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited (down) 11 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
  Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I.
  Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 4 Pages 045301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000419772200005 Publication Date 2018-01-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 11 Issue 9 Pages 8643-8649
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000411918200012 Publication Date 2017-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited (down) 11 Open Access Not_Open_Access
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
  Call Number UA @ lucian @ c:irua:146770 Serial 4895
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M.
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 30 Issue 17 Pages 175701
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000429329500001 Publication Date 2018-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited (down) 11 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983
Permanent link to this record
 

 
Author Kandemir, A.; Peeters, F.M.; Sahin, H.
  Title Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via spectrum Type A1 Journal article
  Year 2018 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 149 Issue 8 Pages 084707
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants). Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000444035800044 Publication Date 2018-08-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited (down) 11 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from TUBITAK under Project No. 117F095. F.M.P. was supported by the FLAG-ERA-TRANS<INF>2D</INF>TMD. ; Approved Most recent IF: 2.965
  Call Number UA @ lucian @ c:irua:153711UA @ admin @ c:irua:153711 Serial 5115
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal
  Volume 6 Issue 6 Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461540600001 Publication Date 2019-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited (down) 11 Open Access OpenAccess
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:158540 Serial 5205
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J.
  Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 99 Issue 6 Pages 064512
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459322400005 Publication Date 2019-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (down) 11 Open Access
  Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:158621 Serial 5212
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: