|   | 
Details
   web
Records
Author Wardenier, N.; Gorbanev, Y.; Van Moer, I.; Nikiforov, A.; Van Hulle, S.W.H.; Surmont, P.; Lynen, F.; Leys, C.; Bogaerts, A.; Vanraes, P.
Title Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process Type A1 Journal article
Year 2019 Publication Water research Abbreviated Journal Water Res
Volume 161 Issue Pages 549-559
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Pesticides are emerging contaminants frequently detected in the aquatic environment. In this work, a novel approach combining activated carbon adsorption, oxygen plasma treatment and ozonation was studied for the removal of the persistent chlorinated pesticide alachlor. A comparison was made between the removal efficiency and energy consumption for two different reactor operation modes: batchrecirculation and single-pass mode. The kinetics study revealed that the insufficient removal of alachlor by adsorption was significantly improved in terms of degradation efficiency and energy consumption when combined with the plasma treatment. The best efficiency (ca. 80% removal with an energy cost of 19.4 kWh mÀ3) was found for the single-pass operational mode of the reactor. In the batch-recirculating process, a complete elimination of alachlor by plasma treatment was observed after 30 min of treatment. Analysis of the reactive species induced by plasma in aqueous solutions showed that the decomposition of alachlor mainly occurred through a radical oxidation mechanism, with a minor contribution of long-living oxidants (O3, H2O2). Investigation of the alachlor oxidation pathways revealed six different oxidation mechanisms, including the loss of aromaticity which was never before reported for plasma-assisted degradation of aromatic pesticides. It was revealed that the removal rate and energy cost could be further improved with more than 50% by additional O3 gas bubbling in the solution reservoir.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000475999400054 Publication Date 2019-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited (up) 2 Open Access
Notes PlasmaTex project IWT, 1408/2 ; the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Flemish Knowledge Centre Water; This work was financially supported by the PlasmaTex project IWT 1408/2 and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (‘LTPAM’, grant no. 743151). This research was initiated within the LED H2O project which is financially supported by the Flemish Knowledge Centre Water (Vlakwa). Approved Most recent IF: 6.942
Call Number PLASMANT @ plasmant @c:irua:161173 Serial 5288
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 496 Issue 496 Pages 143618
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488957400004 Publication Date 2019-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited (up) 2 Open Access
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:163695 Serial 6294
Permanent link to this record
 

 
Author Katiyar, K.S.; Lin, A.; Fridman, A.; Keating, C.E.; Cullen, D.K.; Miller, V.
Title Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro Type A1 Journal article
Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 9 Issue 18 Pages 3747
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Non-thermal plasma (NTP), defined as a partially ionized gas, is an emerging technology with several biomedical applications, including tissue regeneration. In particular, NTP treatment has been shown to activate endogenous biological processes to promote cell regrowth, differentiation, and proliferation in multiple cell types. However, the effects of this therapy on nervous system regeneration have not yet been established. Accordingly, the current study explored the effects of a nanosecond-pulsed dielectric barrier discharge plasma on neural regeneration. Following mechanical trauma in vitro, plasma was applied either directly to (1) astrocytes alone, (2) neurons alone, or (3) neurons or astrocytes in a non-contact co-culture. Remarkably, we identified NTP treatment intensities that accelerated both neurite regeneration and astrocyte regrowth. In astrocyte cultures alone, an exposure of 20-90 mJ accelerated astrocyte re-growth up to three days post-injury, while neurons required lower treatment intensities (<= 20 mJ) to achieve sub-lethal outgrowth. Following injury to neurons in non-contact co-culture with astrocytes, 20 mJ exposure of plasma to only neurons or astrocytes resulted in increased neurite regeneration at three days post-treatment compared to the untreated, but no enhancement was observed when both cell types were treated. At day seven, although regeneration further increased, NTP did not elicit a significant increase from the control. However, plasma exposure at higher intensities was found to be injurious, underscoring the need to optimize exposure levels. These results suggest that growth-promoting physiological responses may be elicited via properly calibrated NTP treatment to neurons and/or astrocytes. This could be exploited to accelerate neurite re-growth and modulate neuron-astrocyte interactions, thereby hastening nervous system regeneration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489115200107 Publication Date 2019-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited (up) 2 Open Access
Notes Approved Most recent IF: 1.679
Call Number UA @ admin @ c:irua:163799 Serial 6312
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A.
Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
Year 2020 Publication Cells Abbreviated Journal Cells
Volume 9 Issue 10 Pages 2330
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584186700001 Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W.
Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 124 Issue 11 Pages 6472-6478
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526396000067 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (up) 2 Open Access
Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536
Call Number UA @ admin @ c:irua:168625 Serial 6528
Permanent link to this record
 

 
Author Foumani, A.A.; Forster, D.J.; Ghorbanfekr, H.; Weber, R.; Graf, T.; Niknam, A.R.
Title Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses : an investigation of the re-deposition phenomenon Type A1 Journal article
Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
Volume 537 Issue Pages 147775
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The demand for higher throughput in the processing of materials with ultra-short pulsed lasers has motivated studies on the use of double pulses (DP). It has been observed in such studies that at relatively high time delays between the two pulses, the ablated volume is lower than that for a single pulse (SP). This has been attributed to the shielding of the second pulse and the re-deposition of the material removed by the first pulse. The investigation of re-deposition in copper with the aid of atomistic simulations is the main objective of this study. Nevertheless, a computational investigation of SP-ablation and experimental measurement of the SP-ablation depths and threshold fluence are also covered. The applied computational apparatus comprises a combination of molecular dynamics with the two-temperature model and the Helmholtz wave equation. The analysis of the simulation results shows that the derived quantities like the SP-ablation threshold fluence and the ratio of DP ablation depth to SP-ablation depth are in agreement with the experimental values. An important finding of this study is that the characteristics of the re-deposition process are highly dependent on the fluence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000582798700006 Publication Date 2020-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited (up) 2 Open Access Not_Open_Access
Notes ; The authors thank the Center for High-Performance Computing at Shahid Beheshti University of Iran (SARMAD) for making available the computational resources required for this work. ; Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:174299 Serial 6683
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
Title Indentation of graphene nano-bubbles Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue 15 Pages 5876-5883
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776763000001 Publication Date 2022-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited (up) 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:187924 Serial 7171
Permanent link to this record
 

 
Author van Cleempoel, A.; Joutsensaari, J.; Kauppinen, E.; Gijbels, R.; Claeys, M.
Title Aerosol synthesis and characterization of ultrafine fullerene particles Type A1 Journal article
Year 1998 Publication Fullerene science and technology Abbreviated Journal Fullerene Sci Techn
Volume 6 Issue 4 Pages 599-627
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000074859200001 Publication Date 2008-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-122X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24038 Serial 78
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Densification of thin a-C: H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 39 Issue 9 Pages 1948-1953
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000238233900035 Publication Date 2006-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 2.588; 2006 IF: 2.077
Call Number UA @ lucian @ c:irua:57254 Serial 634
Permanent link to this record
 

 
Author Clima, S.; Kaczer, B.; Govoreanu, B.; Popovici, M.; Swerts, J.; Verhulst, A.S.; Jurczak, M.; De Gendt, S.; Pourtois, G.
Title Determination of ultimate leakage through rutile TiO2 and tetragonal ZrO2 from ab initio complex band calculations Type A1 Journal article
Year 2013 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 34 Issue 3 Pages 402-404
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract First-principle complex band structures have been computed for rutile TiO2 and tetragonal ZrO2 insulating materials that are of current technological relevance to dynamic random accessmemorymetal-insulator-metal (MIM) capacitors. From the magnitude of the complex wave vectors in different orientations, the most penetrating orientations have been identified. Tunneling effective masses m(tunnel) have been extracted, are shown to be a crucial parameter for the intrinsic leakage, and are identified to be an important parameter in further scaling of MIM capacitors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315723000024 Publication Date 2013-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.048; 2013 IF: 3.023
Call Number UA @ lucian @ c:irua:108295 Serial 680
Permanent link to this record
 

 
Author Luyten, W.; Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Férauge, C.; Gijbels, R.; Vasilev, M.G.; Shelyakin, A.A.; Lazarev, V.B.
Title Electron microscopy and mass-spectrometry study of In0.72Ga0.28As0.62P0.38 lasers grown by liquid phase epitaxy Type A1 Journal article
Year 1993 Publication Physica status solidi: A: applied research Abbreviated Journal
Volume 140 Issue 2 Pages 453-462
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Broad area as well as buried heterostructure lasers based on In0.72Ga0.28As0.62P0.38/InP and emitting at 1.3 mum are grown by liquid phase epitaxy and are studied in detail by means of transmission electron microscopy, X-ray diffraction, secondary ion mass-spectrometry, and electroluminescence. The InGaAsP epilayer is found to be well lattice-matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in the InGaAsP alloy. We also report on the high performance characteristics of the infrared lasers.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1993MP79700015 Publication Date 2007-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 3 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6156 Serial 946
Permanent link to this record
 

 
Author Bosch, B.; Leleu, M.; Oustrière, P.; Sarcia, C.; Sureau, J.F.; Blommaert, W.; Gijbels, R.; Sadurski, A.; Vandelannoote, R.; Van Grieken, R.; Van 'T Dack, L.;
Title Hydrogeochemistry in the zinclead mining district of Les Malines (Gard, France) Type A1 Journal article
Year 1986 Publication Chemical geology Abbreviated Journal Chem Geol
Volume 55 Issue 1/2 Pages 31-44
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Sensitive multi-element analysis techniques together with major-element and isotopic analyses were applied to spring, mine and surface waters in the vicinity of an important known zinclead deposit in a carbonate environment, in the Les Malines area (Gard, France). Both the dissolved and suspended phases were investigated, and concretions and sediments were also considered in some cases. This methodological test shows that the ore body leaves various clear fingerprints, such as the Zn, As, Sb, Pb and U levels in the dissolved phase, the sulfate increment and the δ 34S. Some of the elements in solution are controlled by slightly soluble compounds, e.g. Zn by smithsonite and hydrozincite, Ba by barite, and Pb by hydrocerussite. Mapping the saturation indices for these elements appears useful for displaying the hydrogeochemical anomaly.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1986C743300003 Publication Date 2003-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2541; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.524 Times cited (up) 3 Open Access
Notes Approved CRYSTALLOGRAPHY 19/26 Q3 # PHYSICS, CONDENSED MATTER 53/67 Q4 #
Call Number UA @ lucian @ c:irua:111481 Serial 1537
Permanent link to this record
 

 
Author Somers, W.; Dubreuil, M.F.; Neyts, E.C.; Vangeneugden, D.; Bogaerts, A.
Title Incorporation of fluorescent dyes in atmospheric pressure plasma coatings for in-line monitoring of coating homogeneity Type A1 Journal article
Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 11 Issue 7 Pages 678-684
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper reports on the incorporation of three commercial fluorescent dyes, i.e., rhodamine 6G, fluorescein, and fluorescent brightener 184, in plasma coatings, by utilizing a dielectric barrier discharge (DBD) reactor, and the subsequent monitoring of the coatings homogeneity based on the emitted fluorescent light. The plasma coatings are qualitatively characterized with fluorescence microscopy, UVvis spectroscopy and profilometry for the determination of the coating thickness. The emitted fluorescent light of the coating correlates to the amount of dye per area, and deviations of these factors can hence be observed by monitoring the intensity of this light. This allows monitoring the homogeneity of the plasma coatings in a fast and simple way, without making major adjustments to the process.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000340416300007 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 2.846; 2014 IF: 2.453
Call Number UA @ lucian @ c:irua:118063 Serial 1598
Permanent link to this record
 

 
Author Kato, T.; Neyts, E.C.; Abiko, Y.; Akama, T.; Hatakeyama, R.; Kaneko, T.
Title Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 11903-11908
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A method has been developed for damage-free cesium (Cs) encapsulation within single-walled carbon nanotubes (SWNTs) with fine position selectivity. Precise energy tuning of Cs-ion irradiation revealed that there is a clear energy window (2060 eV) for the efficient encapsulation of Cs through the hexagonal network of SWNT sidewalls without causing significant damage. This minimum energy threshold of Cs-ion encapsulation (∼20 eV) matches well with the value obtained by ab initio simulation (∼22 eV). Furthermore, position-selective Cs encapsulation was carried out, resulting in the successful formation of pn-junction SWNT thin films with excellent environmental stability.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000355495600072 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:125928 Serial 1760
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Marushkin, K.; Gijbels, R.; Férauge, C.; Vasilyev, M.G.; Shelyakin, A.A.; Sokolovsky, A.A.
Title LPE growth and characterization of InGaAsP/InP heterostructures: IR-emitting diodes at 1.66 μm: application to the remote monitoring of methane gas Type A1 Journal article
Year 1997 Publication Sensors and actuators : A : physical Abbreviated Journal Sensor Actuat A-Phys
Volume 62 Issue 1/3 Pages 624-632
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Highly effective IR light-emitting diodes operating at the wavelength 1.66 mu m and based on the buried heterostructure In0.88Ga0.12As0.26P0.74/ In0.72Ga0.28As0.62P0.38/In0.53Ga0.47As/InP have been grown by liquid-phase epitaxy (LPE) and characterized in detail by means of transmission electron microscopy (TEM), high-resolution electron microscopy (HREM),electron diffraction (ED), X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS) and electroluminescence measurements. The InGaAsP epilayers are found to be well lattice matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in InGaAsP alloys. A new type of selective CK, gas sensor has been developed and fabricated an the basis of the IR light-emitting diode mentioned above. Especially designed for the remote control of CH4 gas via fibre optics, an integrated optoelectronic readout scheme has been developed and tested, It is shown that the proposed type of sensor can be used for the quantitative remote control of CH4 gas concentration (0.2-100%) via a fibre glass line up to a distance of 2 x 1 km. (C) 1997 Elsevier Science S.A.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos A1997YD90600029 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-4247; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.499 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 2.499; 1997 IF: 0.635
Call Number UA @ lucian @ c:irua:20455 Serial 1855
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A.
Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 021310
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000355739500026 Publication Date 2015-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:122650 Serial 2107
Permanent link to this record
 

 
Author Lenaerts, J.; Verlinden, G.; Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Geuens, I.
Title Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS) Type A1 Journal article
Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem
Volume 370 Issue 5 Pages 654-662
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000170115200032 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:37251 Serial 2135
Permanent link to this record
 

 
Author Tinck, S.; De Schepper, P.; Bogaerts, A.
Title Numerical investigation of SiO2 coating deposition in wafer processing reactors with SiCl4/O2/Ar inductively coupled plasmas Type A1 Journal article
Year 2013 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 10 Issue 8 Pages 714-730
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Simulations and experiments are performed to obtain a better insight in the plasma enhanced chemical vapor deposition process of SiO2 by SiCl4/O2/Ar plasmas for introducing a SiO2-like coating in wafer processing reactors. Reaction sets describing the plasma and surface chemistry of the SiCl4/O2/Ar mixture are presented. Typical calculation results include the bulk plasma characteristics, i.e., electrical properties, species densities, and information on important production and loss processes, as well as the chemical composition of the deposited coating, and the thickness uniformity of the film on all reactor surfaces. The film deposition characteristics, and the trends for varying discharge conditions, are explained based on the plasma behavior, as calculated by the model.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000327790000006 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 2.846; 2013 IF: 2.964
Call Number UA @ lucian @ c:irua:109900 Serial 2397
Permanent link to this record
 

 
Author Ignatova, V.A.; Lebedev, O.I.; Wätjen, U.; van Vaeck, L.; van Landuyt, J.; Gijbels, R.; Adams, F.
Title Observation of Sb203 nanocrystals in SiO2 after Sb ion implantation Type A1 Journal article
Year 2002 Publication Microchimica acta Abbreviated Journal Microchim Acta
Volume 139 Issue Pages 77-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Wien Editor
Language Wos 000175560300012 Publication Date 2003-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-3672;1436-5073; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.58 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 4.58; 2002 IF: NA
Call Number UA @ lucian @ c:irua:38378 Serial 2420
Permanent link to this record
 

 
Author Geuens, I.; Nys, B.; Naudts, J.; Gijbels, R.; Jacob, W.; van Espen, P.
Title The primary energy dependence of backscattered electron images up to 100 keV Type A1 Journal article
Year 1991 Publication Scanning microscopy Abbreviated Journal
Volume 5 Issue 2 Pages 339-344
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Chicago, Ill. Editor
Language Wos A1991GC67000005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0891-7035 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 3 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:709 Serial 2713
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R.
Title S-SIMS and MetA-SIMS study of organic additives in thin polymer coatings Type A1 Journal article
Year 2006 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 252 Issue 19 Pages 6628-6631
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240609900057 Publication Date 2006-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.387; 2006 IF: 1.436
Call Number UA @ lucian @ c:irua:60083 Serial 2937
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B.
Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 36 Pages 15091-15097
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000323520600029 Publication Date 2013-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited (up) 3 Open Access
Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:110793 Serial 3130
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; Geuens, I.; Gijbels, R.; Jacob, W.; de Keyzer, R.
Title A temperature study of mixed AgBr-AgBrI tabular crystals Type H1 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 70-76
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Hawaii Editor
Language Wos A1995RY19900011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 39 Series Issue 1 Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 3 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:8459 Serial 3501
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C.
Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 472-477
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368562200057 Publication Date 2015-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited (up) 3 Open Access
Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536
Call Number c:irua:130677 Serial 4002
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B.
Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104306
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361636900031 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited (up) 3 Open Access
Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:128729 Serial 4056
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A.
Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385494000006 Publication Date 2016-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited (up) 3 Open Access
Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A.
Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 065012
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386605100002 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited (up) 3 Open Access
Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.
Title Special Issue on Numerical Modelling of Low-Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches Type Editorial
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1690011
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2017-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record
Impact Factor 2.846 Times cited (up) 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:141721 Serial 4475
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
Year 2017 Publication Chemical science Abbreviated Journal Chem Sci
Volume 8 Issue 10 Pages 7160-7168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411730500055 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited (up) 3 Open Access OpenAccess
Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668
Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y.
Title Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 39 Pages 395204
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000410390100001 Publication Date 2017-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (up) 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:145603 Serial 4754
Permanent link to this record