|   | 
Details
   web
Records
Author Michel, K.H.; Nikolaev, A.V.
Title Theory of distinct crystal structures of polymerized fullerides AC60, A=K, Rb, Cs: the specific role of alkalis Type A1 Journal article
Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 85 Issue Pages 3197-3200
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000089807800033 Publication Date 2002-07-27
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 16 Open Access
Notes Approved Most recent IF: 8.462; 2000 IF: 6.462
Call Number UA @ lucian @ c:irua:34339 Serial 3615
Permanent link to this record
 

 
Author Gong, X.; Marmy, P.; Volodin, A.; Amin-Ahmadi, B.; Qin, L.; Schryvers, D.; Gavrilov, S.; Stergar, E.; Verlinden, B.; Wevers, M.; Seefeldt, M.
Title Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr–1Mo ferritic–martensitic steel embrittled by liquid lead–bismuth under low cycle fatigue Type A1 Journal article
Year 2016 Publication Corrosion science Abbreviated Journal
Volume 102 Issue 102 Pages 137-152
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Liquid metal embrittlement (LME) induced quasi-brittle fracture characteristics of a 9Cr–1Mo ferritic–martensitic steel (T91) after fatigue cracking in lead–bismuth eutectic (LBE) have been investigated at various length scales. The results show that the LME fracture morphology is primarily characterized by quasi-brittle translath flat regions partially covered by nanodimples, shallow secondary cracks propagating along the martensitic lath boundaries as well as tear ridges covered by micro dimples. These diverse LME fracture features likely indicate a LME mechanism involving multiple physical processes, such as weakening induced interatomic decohesion at the crack tip and plastic shearing induced nano/micro voiding in the plastic zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367275700014 Publication Date 2015-10-22
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 16 Open Access
Notes The work is financially supported by the MYRRHA project,SCK•CEN, Belgium and partly funded by the European AtomicEnergy Community’s (Euratom) Seventh Framework ProgrammeFP7/2007-2013 under grant agreement No. 604862 (MatISSEproject) and in the framework of the EERA (European EnergyResearch Alliance) Joint Programme on Nuclear Materials. Dr. TomVan der Donck (KU Leuven) is acknowledged for the EBSD mea-surements. The authors are grateful to Dr. Van Renterghem Wouter(SCK•CEN) for fruitful discussion of the TEM results. Xing Gongsincerely acknowledges valuable suggestions from Dr. S.P. Lynch(Defence Science and Technology Organisation and Monash Uni-versity, Melbourne, Australia). Approved Most recent IF: NA
Call Number c:irua:129997 Serial 4013
Permanent link to this record
 

 
Author Cornelissens, Y.G.; Partoens, B.; Peeters, F.M.
Title Transition from two-dimensional to three-dimensional classical artificial atoms Type A1 Journal article
Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 8 Issue Pages 314-322
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000165183000003 Publication Date 2002-07-25
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 16 Open Access
Notes Approved Most recent IF: 2.221; 2000 IF: 0.878
Call Number UA @ lucian @ c:irua:34349 Serial 3700
Permanent link to this record
 

 
Author Laffez, P.; Retoux, R.; Boullay, P.; Zaghrioui, M.; Lacorre, P.; Van Tendeloo, G.
Title Transmission electron microscopy of NdNiO3 thin films on silicon substrates Type A1 Journal article
Year 2000 Publication European physical journal: applied physics Abbreviated Journal Eur Phys J-Appl Phys
Volume 12 Issue Pages 55-60
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000165528800006 Publication Date 2003-06-20
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042;1286-0050; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.684 Times cited 16 Open Access
Notes Approved Most recent IF: 0.684; 2000 IF: 0.535
Call Number UA @ lucian @ c:irua:54781 Serial 3711
Permanent link to this record
 

 
Author Yan, L.; Niu, H.; Bridges, C.A.; Marshall, P.A.; Hadermann, J.; Van Tendeloo, G.; Chalker, P.R.; Rosseinsky, M.J.
Title Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition Type A1 Journal article
Year 2007 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 46 Issue 24 Pages 4539-4542
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000247500600026 Publication Date 2007-05-10
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 16 Open Access
Notes Approved Most recent IF: 11.994; 2007 IF: 10.031
Call Number UA @ lucian @ c:irua:65593 Serial 3812
Permanent link to this record
 

 
Author Charlier, E.; van Doorselaer, M.; Gijbels, R.; de Keyzer, R.; Geuens, I.
Title Unveiling the composition of sulphur sensitization specks by their interactions with TAI Type A1 Journal article
Year 2000 Publication Journal Of Imaging Science And Technology Abbreviated Journal J Imaging Sci Techn
Volume 44 Issue 3 Pages 235-241
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-step process for the formation of sensitivity centers different from earlier described two-step processes was found for sulfur sensitized emulsions. After deposition of sulfur in the first step, it was found that the second step does not consist of rearrangement of sulfur over the surface, but of the supply of silver interstitial ions towards the deposited sulfur clusters. The two processes could be separated by adsorbing and desorbing TAI (4-hydroxy-1, 3,3a, 7-tetraazaindene) at/from the silver halide surface. When 1.5 mmol TAI/mol Ag is added before the sulfur reaction, the silver interstitials are immobilized but sulfur still can be deposited at the same level. By lowering the pH to 2.50 after this sulfur reaction, TAI is desorbed from the surface and the released interstitials then cause a restoration of the properties of a sulfur system without TAI. These effects could be demonstrated via diffuse reflectance spectroscopy (DRS), sensitometry and dielectric loss measurements. We could also confirm the isolation of silver sulfide clusters by TAI from other chemicals in the solution, by adsorption of TAI on the clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Va Editor
Language Wos 000087651100010 Publication Date 0000-00-00
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-3701 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.348 Times cited 16 Open Access
Notes Approved Most recent IF: 0.348; 2000 IF: NA
Call Number UA @ lucian @ c:irua:34075 Serial 3820
Permanent link to this record
 

 
Author He, Z.; Lee, C.S.; Maurice, J.-L.; Pribat, D.; Haghi-Ashtiani, P.; Cojocaru, C.S.
Title Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 14 Pages 4710-4718
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Plasma-enhanced chemical vapor deposition, without a nickel-containing gaseous precursor, was used to synthesize continuous nickel (Ni) nanorods inside the hollow cavity of carbon nanofibers (CNFs), thus forming vertically aligned Ni/CNF core/shell structures. Scanning and transmission electron microscopic images indicate that the elongated Ni nanorods originate from the catalyst particles at the tips of the CNFs and that their formation is due to the effect of extrusion induced by the compressive force of the graphene layers during growth. Different from previous work, each vertically-aligned core/shell structure reported is totally isolated from its neighbors. Continuous Ni nanorods are found to separate into smaller ones with increasing growth time, which was ascribed to (i) the limited amount of Ni available in the tip of the CNF, (ii) the polycrystalline nature of the Ni nanorods and (iii) the combined effects of the compressive stresses on the side of the Ni nanorods and of the tensile stress along their axis.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000295308300010 Publication Date 2011-06-30
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 16 Open Access
Notes Approved Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:92782 Serial 3841
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles Type A1 Journal article
Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 437/438 Issue Pages 208-212
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000238395700050 Publication Date 2006-02-10
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 16 Open Access
Notes Approved Most recent IF: 1.404; 2006 IF: 0.792
Call Number UA @ lucian @ c:irua:58359 Serial 3860
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L.
Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 6 Pages 26856-26862
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372253700043 Publication Date 2016-03-07
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 16 Open Access
Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108
Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022
Permanent link to this record
 

 
Author Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Altantzis, T.; Bals, S.; Schotter, J.
Title Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes Type A1 Journal article
Year 2016 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 8 Issue 8 Pages 8893-8899
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 – sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.
Address Molecular Diagnostics, AIT Austrian Institute of Technology , Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000374274900007 Publication Date 2016-03-29
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 16 Open Access OpenAccess
Notes The authors thank Frauke Alves, Julia Bode and Fernanda Ramos Gomes from the Max-Planck-Institute of Experimental Medicine in Göttingen for providing the trastuzumab antibody in form of the Herceptin therapeutic drug. The figure showing the measurement principle has been created by Darragh Crotty (www.darraghcrotty.com). Parts of this research were supported by the European Commission FP7 NAMDIATREAM project (EU NMP4-LA-2010−246479), by the German research foundation (DFG grant GRK 1782 to W.J.P.), and by the European Research Council (ERC Starting Grant #335078 Colouratom). B.P. acknowledges a PostDoctoral fellowship from the Alexander von Humboldt foundation. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 7.504
Call Number c:irua:132889 Serial 4059
Permanent link to this record
 

 
Author Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T.
Title Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 181 Issue 181 Pages 542-549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364256000052 Publication Date 2015-08-18
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 16 Open Access OpenAccess
Notes The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:128345 Serial 4064
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J.
Title Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries Type A1 Journal article
Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 134108
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.

Instead of writing the scattering amplitude in Fourier space as a set of plane waves,we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362893100002 Publication Date 2015-10-14
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes The authors acknowledge support from the FWO (As- pirant Fonds Wetenschappelijk Onderzoek–Vlaanderen), the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2, and ERC Starting Grant No. 278510 VORTEX; esteem2jra1; ECASJO; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:129417 c:irua:129417UA @ admin @ c:irua:129417 Serial 4089
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M.
Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C
Volume 148 Issue 148 Pages 60-66
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication Amsterdam Editor
Language Wos 000371944500011 Publication Date 2015-11-06
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 16 Open Access
Notes ; ; Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:133151 Serial 4163
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A.
Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 25210-25224
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387737900007 Publication Date 2016-11-10
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 16 Open Access
Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 20 Pages 205426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000402003700010 Publication Date 2017-05-23
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M.
Title Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 8 Pages 4460-4464
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000332188100069 Publication Date 2014-01-22
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 16 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:128874 Serial 4600
Permanent link to this record
 

 
Author Snoeckx, R.; Rabinovich, A.; Dobrynin, D.; Bogaerts, A.; Fridman, A.
Title Plasma-based liquefaction of methane: The road from hydrogen production to direct methane liquefaction Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600115
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract For the energy industry, a process that is able to transform methane—being the prime component of natural gas—efficiently into a liquid product would be equivalent to a goose with golden eggs. As such it is no surprise that research efforts in this field already date back to the nineteen hundreds. Plasma technology can be considered to be a novel player in this field, but nevertheless one with great potential. Over the past decades this technology has evolved from sole hydrogen production, over indirect methane liquefaction to eventually direct plasma-assisted methane liquefaction processes. An overview of this evolution and these processes is presented, from which it becomes clear that the near future probably lies with the direct two phase plasma-assisted methane liquefaction and the far future with the direct oxidative methane liquefaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403699900008 Publication Date 2016-10-28
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 16 Open Access Not_Open_Access
Notes Advanced Plasma Solutions; Drexel University; Federaal Wetenschapsbeleid; Fonds De La Recherche Scientifique – FNRS, G038316N V403616N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:144212 Serial 4622
Permanent link to this record
 

 
Author Orlova, N.V.; Kuopanportti, P.; Milošević, M.V.
Title Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 94 Issue 2 Pages 023617
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381303800006 Publication Date 2016-08-12
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926;2469-9934; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 16 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO). P. K. acknowledges financial support from the Emil Aaltonen Foundation, the Finnish Cultural Foundation, the Magnus Ehrnrooth Foundation, and the Technology Industries of Finland Centennial Foundation. The authors thank R. P. Anderson, E. Babaev, I. O. Cherednikov, V. R. Misko, T. P. Simula, and J. Tempere for useful comments and discussions. ; Approved Most recent IF: 2.925
Call Number UA @ lucian @ c:irua:144673 Serial 4688
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Sarmadian, N.; Neyts, E.C.; Partoens, B.
Title A first principles study of p-type defects in LaCrO3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 34 Pages 22870-22876
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, Sr-doped LaCrO3 has been experimentally introduced as a new p-type transparent conducting oxide. It is demonstrated that substituting Sr for La results in inducing p-type conductivity in LaCrO3. Performing first principles calculations we study the electronic structure and formation energy of various point defects in LaCrO3. Our results for the formation energies show that in addition to Sr, two more divalent defects, Ca and Ba, substituting for La in LaCrO3, behave as shallow acceptors in line with previous experimental reports. We further demonstrate that under oxygen-poor growth conditions, these shallow acceptors will be compensated by intrinsic donor-like defects (an oxygen vacancy and Cr on an oxygen site), but in the oxygen-rich growth regime the shallow acceptors have the lowest formation energies between all considered defects and will lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000408671600026 Publication Date 2017-08-01
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access OpenAccess
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services were provided by the Flemish Supercomputer Center and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:145621 Serial 4735
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-Fard, T.; Farmanbar, M.; Peeters, F.M.
Title Strong anisotropic optical conductivity in two-dimensional puckered structures : the role of the Rashba effect Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 7 Pages 075411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000407097100005 Publication Date 2017-08-09
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145725 Serial 4752
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Modeling of CO2plasma: effect of uncertainties in the plasma chemistry Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 11 Pages 115002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature plasma chemical kinetic models are particularly important to the plasma community. These models typically require dozens of inputs, especially rate coefficients. The latter are not always precisely known and it is not surprising that the error on the rate coefficient data can propagate to the model output. In this paper, we present a model that uses N = 400 different combinations of rate coefficients based on the uncertainty attributed to each rate coefficient, giving a good estimation of the uncertainty on the model output due to the rate coefficients. We demonstrate that the uncertainty varies a lot with the conditions and the type of output. Relatively low uncertainties (about 15%) are found for electron density and temperature, while the uncertainty can reach more than an order of magnitude for the population of the vibrational levels in some cases and it can rise up to 100% for the CO2 conversion. The reactions that are mostly responsible for the largest uncertainties are identified. We show that the conditions of pressure, gas temperature and power density have a great effect on the uncertainty and on which reactions lead to this uncertainty. In all the cases tested here, while the absolute values may suffer from large uncertainties, the trends observed in previous modeling work are still valid. Finally, in accordance with the work of Turner, a number of ‘good practices’ is recommended.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413216500002 Publication Date 2017-10-18
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 16 Open Access OpenAccess
Notes We acknowledge financial support from the European Unions Seventh Framework Program for research, technological development and demonstration under grant agreement n◦ 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:146879c:irua:146642 Serial 4758
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A.
Title Propagation of a plasma streamer in catalyst pores Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 3 Pages 035009
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a twodimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at

very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427976800001 Publication Date 2018-03-20
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 16 Open Access OpenAccess
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the Fund for Scientific Research Flanders (FWO) (Excellence of Science Program; EOS ID 30505023). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:150877 Serial 4954
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M.
Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume 4 Issue 2 Pages 025015
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000424399600005 Publication Date 2017-02-02
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 16 Open Access
Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:149364 Serial 4984
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Vandekerkhove, A.; Willhammar, T.; Bals, S.; Maes, A.; Martens, J.A.; Kirschhock, C.E.A.; Breynaert, E.
Title Postsynthetic high-alumina zeolite crystal engineering in organic free hyper-alkaline media Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 629-638
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Postsynthetic modification of high -alumina zeolites in hyper alkaline media can be tailored toward alteration of framework topology, crystal size and morphology, or desired Si/A1 ratio. FAU, EMT, MAZ, KFI, HEU, and LTA starting materials were treated with 1.2 M MOH (M = Na, K, RE, or Cs), leading to systematic ordered porosity or fully transformed frameworks with new topology and adjustable Si/Al ratio. In addition to the versatility of this tool for zeolite crystal engineering, these alterations improve understanding of the crystal chemistry. Such knowledge can guide further development in zeolite crystal engineering. Postsynthetic alteration also provides insight on the long-term stability of aluminosilicate zeolites that are used as a sorption sink in concrete -based waste disposal facilities in harsh alkaline conditions.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000392891700021 Publication Date 2016-12-20
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access OpenAccess
Notes ; This work was supported by long-term structural funding by the Flemish Government (Methusalem grant of Prof. J. Martens) and by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). S.B. acknowledges financial support from European Research Council (ERC Advanced Grant No. 24691-COUNTATOMS, ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:152674UA @ admin @ c:irua:152674 Serial 5145
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K.
Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
Year 2017 Publication APL materials Abbreviated Journal Apl Mater
Volume 5 Issue 6 Pages 066102
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404623000002 Publication Date 2017-06-08
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 16 Open Access
Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335
Call Number UA @ admin @ c:irua:152633 Serial 5369
Permanent link to this record
 

 
Author Lind, O.C.; de Nolf, W.; Janssens, K.; Salbu, B.
Title Micro-analytical characterisation of radioactive heterogeneities in samples from Central Asian TENORM sites Type A1 Journal article
Year 2013 Publication Journal of environmental radioactivity Abbreviated Journal J Environ Radioactiv
Volume 123 Issue Pages 63-70
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The present work focuses on the use of micro-analytical techniques to demonstrate the heterogeneous distribution of radionuclides and metals in soils collected at Former Soviet Union mining sites in Central Asia. Based on digital autoradiography, radionuclides were heterogeneously distributed in soil samples collected at the abandoned uranium mining sites Kurday, Kazakhstan, Kadji Sai, Kyrgyzstan and Taboshar, Tajikistan. Using electron microscopy interfaced with X-ray microanalysis submicron – mm-sized radioactive particles and rock fragments with U, As, Se and toxic metals on the surfaces were identified in Kurday and Kadji Sai samples. Employing scanning and tomographic (3D) synchrotron radiation based micro-X-ray fluorescence (mu-SRXRF) and synchrotron radiation based micro-X-ray diffraction (mu-SRXRD) allowed us to observe the inner structure of the particles without physical sectioning. The distribution of elements in virtual crosssections demonstrated that U and a series of toxic elements were rather heterogeneously distributed also within individual radioactive TENORM particles. Compared to archived data, U in Kadji Sai particles was present as uraninite (U4O9+y or UO2+x) or Na-zippeite aNa(4)(UO2)(6)[(OH)(10)(SO4)(3)]center dot 4H(2)O), i.e. U minerals with very low solubility. The results suggested that TENORM particles can carry substantial amount of radioactivity, which can be subject to re-suspension, atmospheric transport and water transport. Thus, the potential radioecological and radioanalytical impact of radioactive particles at NORM and TENORM sites worldwide should be taken into account. The present work also demonstrates that radioecological studies should benefit from the use of advanced methods such as synchrotron radiation based techniques. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321177200007 Publication Date 2012-03-16
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.31 Times cited 16 Open Access
Notes ; We gratefully acknowledge the support provided by the Norwegian Ministry of Foreign Affairs and the European Commission (HASYLAB proposal I-20070051 EC and II-20090184 EC). The authors are indebted to Dr. Karen Appel and Dr. Manuela Borchert, Hasylab for beamline assistance. ; Approved Most recent IF: 2.31; 2013 IF: 3.571
Call Number UA @ admin @ c:irua:109558 Serial 5710
Permanent link to this record
 

 
Author Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D.
Title Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 33 Pages 16902-16907
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000562931300008 Publication Date 2020-07-21
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited 16 Open Access OpenAccess
Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number UA @ admin @ c:irua:171989 Serial 6506
Permanent link to this record
 

 
Author Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; Hamer, M.; Terry, D.J.; Peters, J.J.P.; Sanchez, A.M.; Partoens, B.; Haigh, S.J.; Milošević, M.V.; Grigorieva, I., V
Title Enhanced superconductivity in few-layer TaS₂ due to healing by oxygenation Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3808-3818
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (T-c) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer T-c in ultrathin materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300114 Publication Date 2020-04-20
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 16 Open Access
Notes ; This work was supported by Research Foundation-Flanders (FWO). J.Be. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. S.J.H., D.H., and S.F. would like to thank the Engineering and Physical Sciences Research Council (EPSRC) U.K (grants EP/R031711/1, EP/P009050/1 and the Graphene NOWNANO CDT) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement ERC-2016-STG-EvoluTEM-715502, the Hetero2D Synergy grant and EC-FET Graphene Flagship) for funding. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170264 Serial 6507
Permanent link to this record
 

 
Author Coeck, R.; Meeprasert, J.; Li, G.; Altantzis, T.; Bals, S.; Pidko, E.A.; De Vos, D.E.
Title Gold and silver-catalyzed reductive amination of aromatic carboxylic acids to benzylic amines Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 13 Pages 7672-7684
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The reductive amination of benzoic acid and its derivatives would be an effective addition to current synthesis methods for benzylamine. However, with current technology it is very difficult to keep the aromaticity intact when starting from benzoic acid, and salt wastes are often generated in the process. Here, we report a heterogeneous catalytic system for such a reductive amination, requiring solely H-2 and NH3 as the reactants. The Ag/TiO2 or Au/TiO2 catalysts can be used multiple times, and very little noble metal is required, only 0.025 mol % Au. The catalysts are bifunctional: the support catalyzes the dehydration of both the ammonium carboxylate to the amide and of the amide to the nitrile, while the sites at the metal-support interface promote the hydrogenation of the in situ generated nitrile. Yields of up to 92% benzylamine were obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670659900005 Publication Date 2021-06-10
Series Editor Series Title (up) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 16 Open Access OpenAccess
Notes R.C. thanks the FWO for his SB PhD fellowship. D.E.D.V. acknowledges FWO for research project funding, as well as KU Leuven for funding in the Metusalem program Casas. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO). T.A. acknowledges funding from the University of Antwerp Research fund (BOF). E.A.P. acknowledges the support from the European Research Council (ERC Consolidator grant #725686 DeliCAT). J.M. acknowledges financial support through the Royal Thai Government Scholarship. DFT calculations on SURFsara supercomputer facilities were performed with support from the Netherlands Organization for Scientific Research (NWO).; sygmaSB Approved Most recent IF: 10.614
Call Number UA @ admin @ c:irua:179851 Serial 6840
Permanent link to this record