|   | 
Details
   web
Records
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M.
Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 107-110
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000392036900025 Publication Date 2016-12-29
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 267 Open Access OpenAccess
Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339
Permanent link to this record
 

 
Author Garzia Trulli, M.; Claes, N.; Pype, J.; Bals, S.; Baert, K.; Terryn, H.; Sardella, E.; Favia, P.; Vanhulsel, A.
Title Deposition of aminosilane coatings on porous Al2O3microspheres by means of dielectric barrier discharges Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600211
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Advances in the synthesis of porous microspheres and in their functionalization are increasing the interest in applications of alumina. This paper deals with coatings plasma deposited from 3-aminopropyltriethoxysilane by means of dielectric barrier discharges on alumina porous microspheres, shaped by a vibrational droplet coagulation technique. Aims of the work are the functionalization of the particles with active amino groups, as well as the evaluation of their surface coverage and of the penetration of the coatings into their pores. A multi-diagnostic approach was used for the chemical/morphological characterization of the particles. It was found that 5 min exposure to plasma discharges promotes the deposition of homogeneous coatings onto the microspheres and within their pores, down to 1 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410773200003 Publication Date 2017-01-05
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access OpenAccess
Notes The technical assistance of the VITO staff (Materials Dpt.) is gratefully acknowledged, especially D. Havermans, E. Van Hoof, R. Kemps (SEM-EDX), and A. De Wilde (Hg Porosimetry). Drs. S. Mullens and G. Scheltjens are kindly acknowledged for constructive discussions. Strategic Initiative Materials in Flanders (SIM) is gratefully acknowledged for its financial support. This research was carried out in the framework of the SIM-TRAP program (Tools for rational processing of nano-particles: controlling and tailoring nanoparticle based or nanomodified particle based materials). N. Claes and S. Bals acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.846
Call Number EMAT @ emat @ c:irua:139511UA @ admin @ c:irua:139511 Serial 4342
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I.
Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 9169-9180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391080900036 Publication Date 2016-12-27
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 80 Open Access OpenAccess
Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139513 Serial 4344
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S.
Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 234 Issue 234 Pages 186-195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000383291400020 Publication Date 2016-07-09
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:137108 Serial 4404
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S.
Title An alternative approach for \zeta-factor measurement using pure element nanoparticles Type A1 Journal article
Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 164 Issue Pages 11-16
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called zeta-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000373526200002 Publication Date 2016-03-10
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access OpenAccess
Notes ; The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). ; ecas_Sara Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:133259 Serial 4439
Permanent link to this record
 

 
Author Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E.M.; Bals, S.; Kirschhock, C.E.A.; De Vos, D.E.
Title PdPb-catalyzed decarboxylation of proline to pyrrolidine : highly selective formation of a biobased amine in water Type A1 Journal article
Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 6 Issue 6 Pages 7303-7310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Amino acids have huge potential as platform chemicals in the biobased industry. Pd-catalyzed decarboxylation is a very promising route for the valorization of these natural compounds derived from protein waste or fermentation. We report that the highly abundant and nonessential amino acid L-proline is very reactive in the Pd-catalyzed decarboxylation. Full conversions are obtained with Pd/C and different Pd/MeOx catalysts; this allowed the identification of the different side reactions and the mapping of the reaction network. Due to the high reactivity of pyrrolidine, the selectivity for pyrrolidine was initially low. By carefully modifying Pd/ZrO2 with Pb in a controlled manner-via two incipient wetness impregnation steps-the selectivity increased remarkably. Finally, a thorough investigation of the reaction parameters resulted in an increased activity of this modified catalyst and an even further enhanced selectivity under a low H-2 pressure of 4 bar at 235 degrees C in water. This results in a very selective and sustainable production route for the highly interesting pyrrolidine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387306100005 Publication Date 2016-09-16
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 27 Open Access OpenAccess
Notes ; J.V. and F.D.S. thank Fonds Wetenschappelijk Onderzoek (FWO) and Agency for Innovation by Science and Technology (IWT) for doctoral fellowships. D.D.V. acknowledges IWT and FWO for research project funding. D.D.V. and C.E.A.K. acknowledge the Flemish government for long-term structural funding through Methusalem. D.D.V. and S.B. acknowledge Belspo (IAP-PAI 7/05) for financial support. S.B. is grateful for funding by the European Research Council (ERC starting grant no. 335078-COLOURATOMS). The authors also thank the Department of Chemistry, University of Cologne, Germany for use of their XRD equipment. Finally, the assistance of Karel Duerinckx, Werner Wouters, Walter Vermandel, Ivo Stassen, Dries Jonckheere, Sabina Accardo and Bart Bueken with 11-1 NMR, pressure reactors, CO chemisorption, N<INF>2</INF> physisorption, SEM, gas phase FTIR and high-throughput XRD, respectively, is very much appreciated. ; ecas_Sara Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:139171 Serial 4445
Permanent link to this record
 

 
Author Grzelczak, M.; Sanchez-Iglesias, A.; Heidari, H.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M.
Title Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles Type A1 Journal article
Year 2016 Publication ACS Omega Abbreviated Journal
Volume 1 Issue 1 Pages 177-181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single-or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391203300002 Publication Date 2016-08-03
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343;2470-1343; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 18 Open Access OpenAccess
Notes ; This work was supported by the Spanish Ministerio de Economia y Competitividad MINECO (grants: MAT2013-46101-R, MAT2013-49375-EXP, MAT2013-45168-R). Financial support is acknowledged by the European Research Council (ERC Advanced Grant # 267867, PLASMAQUO; ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:140398 Serial 4446
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A.
Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 159 Issue 159 Pages 179-188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000388053600021 Publication Date 2016-09-19
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 32 Open Access OpenAccess
Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450
Permanent link to this record
 

 
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 316 Issue 316 Pages 850-856
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398985200089 Publication Date 2017-02-08
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 30 Open Access OpenAccess
Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Zhong, Z.; Goris, B.; Schoenmakers, R.; Bals, S.; Batenburg, K.J.
Title A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 174 Issue 174 Pages 35-45
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A three-dimensional (3D) chemical characterization of nanomaterials can be obtained using tomography based on high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) or energy dispersive X-ray spectroscopy (EDS) STEM. These two complementary techniques have both advantages and disadvantages. The Z-contrast images have good image quality but lack robustness in the compositional analysis, while the elemental maps give more element-specific information, but at a low signal-to-noise ratio and a longer exposure time. Our aim is to combine these two types of complementary information in one single tomographic reconstruction process. Therefore, an imaging model is proposed combining both HAADF-STEM

and EDS-STEM. Based on this model, the elemental distributions can be reconstructed using both types of information simultaneously during the reconstruction process. The performance of the new technique is evaluated using simulated data and real experimental data. The results demonstrate that combining two imaging modalities leads to tomographic reconstructions with suppressed noise and enhanced contrast.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403342200005 Publication Date 2016-12-11
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access OpenAccess
Notes This research is supported by the Dutch Technology Foundation STW (http://www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. It is also supported by the Flemish research foundation (FWO Vlaanderen) by project funding (G038116N) and a postdoctoral research grant to B.G. Funding from the European Research Council (Starting Grant No. COLOURATOMS 335078) is acknowledged by S.B. The authors would like to thank Dr. Bernd Rieger and Dr. Richard Aveyard for useful discussions, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. We also acknowledge COST Action MP1207 for networking support. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:141719UA @ admin @ c:irua:141719 Serial 4484
Permanent link to this record
 

 
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J.
Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 175 Issue 175 Pages 87-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403342500008 Publication Date 2017-01-24
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 22 Open Access OpenAccess
Notes This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
Year 2017 Publication APL materials Abbreviated Journal Apl Mater
Volume 5 Issue 5 Pages 036105
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398951000014 Publication Date 2017-03-20
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 21 Open Access OpenAccess
Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335
Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C.
Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 4087-4097
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397477700027 Publication Date 2017-03-10
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 535 Open Access OpenAccess
Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G.
Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 8 Pages 14925
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397799700001 Publication Date 2017-03-30
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 37 Open Access OpenAccess
Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J.
Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 9337-9347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400881100027 Publication Date 2017-04-12
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access OpenAccess
Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial 4551
Permanent link to this record
 

 
Author Ustarroz, J.; Geboes, B.; Vanrompay, H.; Sentosun, K.; Bals, S.; Breugelmans, T.; Hubin, A.
Title Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 16168-16177
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity towards the oxygen reduction reaction (ORR). Herein, we report on the infuence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (HUPD) and compared for the rst time to high angle annular dark eld scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of Pt roughened spheroids, which provide large roughness factor (Rf ) but low mass-speci c electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores protruding to the center of the structure. At the expense of smaller Rf , the obtained EASA values of these structures are in the range of these of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a signi cant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results to macroscopic electrochemical parameters indicated that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly a ected by the measurement itself.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401782500028 Publication Date 2017-04-18
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 24 Open Access OpenAccess
Notes Jon Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). S.B. and T.B. acknowledge the University of Antwerp for nancial support in the frame of a GOA project. H.V. gratefully acknowledges nancial support by the Flemish Fund for Scienti c Research (FWO Vlaanderen). All the authors acknowledge Laurens Stevaert for his contribution to the work presented in this manuscript. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:142345UA @ admin @ c:irua:142345 Serial 4552
Permanent link to this record
 

 
Author Peters, J.L.; van den Bos, K.H.W.; Van Aert, S.; Goris, B.; Bals, S.; Vanmaekelbergh, D.
Title Ligand-Induced Shape Transformation of PbSe Nanocrystals Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 4122-4128
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a study of the relation between the surface chemistry and nanocrystal shape of PbSe nanocrystals with a variable Pb-to-Se stoichiometry and density of oleate ligands. The oleate ligand density and binding configuration are monitored by nuclear magnetic resonance and Fourier transform infrared absorbance spectroscopy, allowing us to quantify the number of surface-attached ligands per NC and the nature of the surface−Pb−oleate configuration. The three-dimensional shape of the PbSe nanocrystals is obtained from high-angle annular dark field scanning transmission electron microscopy combined with an atom counting method. We show that the enhanced oleate capping results in a stabilization and extension of the {111} facets, and a crystal shape transformation from a truncated nanocube to a truncated octahedron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401221700034 Publication Date 2017-05-09
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 45 Open Access OpenAccess
Notes D.V. acknowledges the European Research Council, ERC advanced grant, Project 692691-First Step, for financial support. We also acknowledge the Dutch FOM programme “Designing Dirac carriers in honeycomb semiconductor superlattices” (FOM Program 152) for financial support. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915, G.037413, and funding of a Ph.D. research grant to K.H.W.v.d.B. and a postdoctoral grant to B.G.). S.B. acknowledges the European Research Council, ERC Grant 335078-Colouratom. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:143750 c:irua:142983UA @ admin @ c:irua:143750 Serial 4571
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Mattelaer, F.; Cott, D.J.; Vereecken, P.; Dendooven, J.; Detavernier, C.; Bals, S.
Title Heterogeneous TiO2/V2O5/Carbon Nanotube Electrodes for Lithium-Ion Batteries Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 8055-8064
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Vanadium pentoxide (V2O5) is proposed and investigated as a cathode material for lithium-ion (Li-ion) batteries. However, the dissolution of V2O5 during the charge/discharge remains as an issue at the V2O5–electrolyte interface. In this work, we present a heterogeneous nanostructure with carbon nanotubes supported V2O5/titanium dioxide (TiO2) multilayers as electrodes for thin-film Li-ion batteries. Atomic layer deposition of V2O5 on carbon nanotubes provides enhanced Li storage capacity and high rate performance. An additional TiO2 layer leads to increased morphological stability and in return higher electrochemical cycling performance of V2O5/carbon nanotubes. The physical and chemical properties of TiO2/V2O5/carbon nanotubes are characterized by cyclic voltammetry and charge/discharge measurements as well as electron microscopy. The detailed mechanism of the protective TiO2 layer to improve the electrochemical cycling stability of the V2O5 is unveiled.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396186000021 Publication Date 2017-03-08
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 28 Open Access OpenAccess
Notes European Research Council, 239865 335078 ; Fonds Wetenschappelijk Onderzoek; Agentschap voor Innovatie door Wetenschap en Technologie, 18142 ; Bijzonder Onderzoeksfonds, GOA – 01G01513 ; This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865 and No. 335078), by IWT-Flanders (SBO project IWT 18142 “SoS-Lion”) and by the Special Research Fund BOF of Ghent University (GOA – 01G01513); colouratoms (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:142446UA @ admin @ c:irua:142446 Serial 4572
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S.
Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 8791-8798
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404614700031 Publication Date 2017-06-09
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 33 Open Access OpenAccess
Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367
Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617
Permanent link to this record
 

 
Author Mahr, C.; Kundu, P.; Lackmann, A.; Zanaga, D.; Thiel, K.; Schowalter, M.; Schwan, M.; Bals, S.; Wittstock, A.; Rosenauer, A.
Title Quantitative determination of residual silver distribution in nanoporous gold and its influence on structure and catalytic performance Type A1 Journal article
Year 2017 Publication Journal of catalysis Abbreviated Journal J Catal
Volume 352 Issue 352 Pages 52-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Large efforts have been made trying to understand the origin of the high catalytic activity of dealloyed nanoporous gold as a green catalyst for the selective promotion of chemical reactions at low temperatures. Residual silver, left in the sample after dealloying of a gold-silver alloy, has been shown to have a strong influence on the activity of the catalyst. But the question of how the silver is distributed within the porous structure has not finally been answered yet. We show by quantitative energy dispersive X-ray tomography measurements that silver forms clusters that are distributed irregularly, both on the surface and inside the ligaments building up the porous structure. Furthermore, we find that the role of the residual silver is ambiguous. Whereas CO oxidation is supported by more residual silver, methanol oxidation to methyl formate is hindered. Structural characterisation reveals larger ligaments and pores for decreasing residual silver concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408299600006 Publication Date 2017-05-29
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 42 Open Access OpenAccess
Notes This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6) and WI4497/1-1 (SP 2) within the research unit FOR2213 (www.nagocat. de) and the European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.844
Call Number EMAT @ emat @c:irua:144434UA @ admin @ c:irua:144434 Serial 4623
Permanent link to this record
 

 
Author Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T.A.F.; Fery, A.
Title Nanorattles with tailored electric field enhancement Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 9376-9385
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These

nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high

electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry

owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions

and commensurate variations in enhancement factor. We present a novel synthetic approach for

the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric

nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission

electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering

cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference

time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of

high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy

(STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of

structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic

applications where a defined and robust unit cell is crucial.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405387100015 Publication Date 2017-06-22
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 69 Open Access OpenAccess
Notes This study was funded by the European Research Council under grant Template-assisted assembly of METAmaterials using MECHanical instabilities (METAMECH) ERC-2012-StG 306686. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). M. T. wants to acknowledge funding by the Elite Network of Bavaria, the Bavarian Ministry of State according to the Bavarian elite promotion act (BayEFG), as well as the Alexander von Humboldt Foundation for a Feodor-Lynen Research Fellowship. S. B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T. A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. We thank Ken Harris from the National Research Council Canada for valuable discussion of the manuscript. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367
Call Number EMAT @ emat @ c:irua:144797UA @ admin @ c:irua:144797 Serial 4631
Permanent link to this record
 

 
Author Pulinthanathu Sree, S.; Dendooven, J.; Geerts, L.; Ramachandran, R.K.; Javon, E.; Ceyssens, F.; Breynaert, E.; Kirschhock, C.E.A.; Puers, R.; Altantzis, T.; Van Tendeloo, G.; Bals, S.; Detavernier, C.; Martens, J.A.
Title 3D porous nanostructured platinum prepared using atomic layer deposition Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 19007-19016
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A robust and easy to handle 3D porous platinum structure was created via replicating the 3D channel system

of an ordered mesoporous silica material using atomic layer deposition (ALD) over micrometer distances.

After ALD of Pt in the silica material, the host template was digested using hydrogen fluoride (HF). A fully

connected ordered Pt nanostructure was obtained with morphology and sizes corresponding to that of

the pores of the host matrix, as revealed with high-resolution scanning transmission electron

microscopy and electron tomography. The Pt nanostructure consisted of hexagonal Pt rods originating

from the straight mesopores (11 nm) of the host structure and linking features resulting from Pt

replication of the interconnecting mesopore segments (2–4 nm) present in the silica host structure.

Electron tomography of partial replicas, made by incomplete infilling of Zeotile-4 material with Pt,

provided insight in the connectivity and formation mechanism of the Pt nanostructure by ALD. The Pt

replica was evaluated for its potential use as electrocatalyst for the hydrogen evolution reaction, one of

the half-reactions of water electrolysis, and as microelectrode for biomedical sensing. The Pt replica

showed high activity for the hydrogen evolution reaction and electrochemical characterization revealed

a large impedance improvement in comparison with reference Pt electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411232100010 Publication Date 2017-06-28
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access OpenAccess
Notes This work was supported by the Flemish government through long-term structural funding (Methusalem) to JAM and FWO for a research project (G0A5417N). JD, TA and FC acknowledge Flemish FWO for a post-doctoral fellowship. S. B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 8.867
Call Number EMAT @ emat @ c:irua:144624 c:irua:144624 c:irua:144624UA @ admin @ c:irua:144624 Serial 4634
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T.
Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials
Volume 120 Issue 120 Pages 126-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Guildford Editor
Language Wos 000394398900012 Publication Date 2016-12-14
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.402 Times cited 20 Open Access OpenAccess
Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402
Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654
Permanent link to this record
 

 
Author Debroye, E.; Yuan, H.; Bladt, E.; Baekelant, W.; Van der Auweraer, M.; Hofkens, J.; Bals, S.; Roeffaers, M.B.J.
Title Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue 3 Pages 223-227
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Controlling the morphology of organolead halide perovskite crystals is crucial to a fundamental understanding of the materials and to tune their properties for device applications. Here, we report a facile solution-based method for morphology-controlled synthesis of rod-like and plate-like organolead halide perovskite nanocrystals using binary capping agents. The morphology control is likely due to an interplay between surface binding kinetics of the two capping agents at different crystal facets. By high-resolution scanning transmission electron microscopy, we show that the obtained nanocrystals are monocrystalline. Moreover, long photoluminescence decay times of the nanocrystals indicate long charge diffusion lengths and low trap/defect densities. Our results pave the way for large-scale solution synthesis of organolead halide perovskite nanocrystals with controlled morphology for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399604300003 Publication Date 2017-01-18
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 19 Open Access OpenAccess
Notes ; We acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, postdoctoral fellowship to E. D. and H. Y.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196) and the ERC project LIGHT (GA307523). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). E. B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:143678UA @ admin @ c:irua:143678 Serial 4656
Permanent link to this record
 

 
Author Albrecht, W.; Goris, B.; Bals, S.; Hutter, E.M.; Vanmaekelbergh, D.; van Huis, M.A.; van Blaaderen, A.
Title Morphological and chemical transformations of single silica-coated CdSe/CdS nanorods upon fs-laser excitation Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 4810-4818
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Radiation-induced modifications of nanostructures are of fundamental interest and constitute a viable out-of-equilibrium approach to the development of novel nanomaterials. Herein, we investigated the structural transformation of silica-coated CdSe/CdS nanorods (NRs) under femtosecond (fs) illumination. By comparing the same nanorods before and after illumination with different fluences we found that the silica-shell did not only enhance the stability of the NRs but that the confinement of the NRs also led to novel morphological and chemical transformations. Whereas uncoated CdSe/CdS nanorods were found to sublimate under such excitations the silica-coated nanorods broke into fragments which deformed towards a more spherical shape. Furthermore, CdS decomposed which led to the formation of metallic Cd, confirmed by high-resolution electron microscopy and energy dispersive X-ray spectrometry (EDX), whereby an epitaxial interface with the remaining CdS lattice was formed. Under electron beam exposure similar transformations were found to take place which we followed in situ.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000398954800022 Publication Date 2017-03-23
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 4 Open Access OpenAccess
Notes ; The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. The authors furthermore acknowledge financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS and ERC Consolidator Grant 683076 NANO-INSITU). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B. G. The authors furthermore thank Dave J. van den Heuvel and Hans C. Gerritsen for use of the Thorlabs powermeter. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. ; ecas_sara Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:142384UA @ admin @ c:irua:142384 Serial 4670
Permanent link to this record
 

 
Author Berthold, T.; Castro, C.R.; Winter, M.; Hoerpel, G.; Kurttepeli, M.; Bals, S.; Antonietti, M.; Fechler, N.
Title Tunable nitrogen-doped carbon nanoparticles from tannic acid and urea and their potential for sustainable soots Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume 3 Issue 3 Pages 311-318
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nano-sized nitrogen-doped carbon spheres are synthesized from two cheap, readily available and sustainable precursors: tannic acid and urea. In combination with a polymer structuring agent, nitrogen content, sphere size and the surface (up to 400 m(2)g(-1)) can be conveniently tuned by the precursor ratio, temperature and structuring agent content. Because the chosen precursors allow simple oven synthesis and avoid harsh conditions, this carbon nanosphere platform offers a more sustainable alternative to classical soots, for example, as printing pigments or conduction soots. The carbon spheres are demonstrated to be a promising as conductive carbon additive in anode materials for lithium ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403299200006 Publication Date 2017-03-10
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 14 Open Access OpenAccess
Notes ; S.B. is grateful for funding by the European Research Council (ERC starting grant # 335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:144287UA @ admin @ c:irua:144287 Serial 4699
Permanent link to this record
 

 
Author Zheng, G.; Chen, Z.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L.M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M.
Title Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 16645-16651
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Shape control in metal-organic frameworks still remains a challenge. We propose a strategy based on the capping agent modulator method to control the shape of ZIF-8 nanocrystals. This approach requires the use of a surfactant, cetyltrimethylammonium bromide (CTAB), and a second capping agent, tris(hydroxymethyl)aminomethane (TRIS), to obtain ZIF-8 nanocrystals with morphology control in aqueous media. Semiempirical computational simulations suggest that both shape-inducing agents adsorb onto different surface facets of ZIF-8, thereby slowing down their crystal growth rates. While CTAB molecules preferentially adsorb onto the {100} facets, leading to ZIF-8 particles with cubic morphology, TRIS preferentially stabilizes the {111} facets, inducing the formation of octahedral crystals. Interestingly, the presence of both capping agents leads to nanocrystals with irregular shapes and higher index facets, such as hexapods and burr puzzles. Additionally, the combination of ZIF-8 nanocrystals with other materials is expected to impart additional properties due to the hybrid nature of the resulting nanocomposites. In the present case, the presence of CTAB and TRIS molecules as capping agents facilitates the synthesis of metal nanoparticle@ZIF-8 nanocomposites, due to synergistic effects which could be of use in a number of applications such as catalysis, gas sensing and storage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414960900015 Publication Date 2017-07-25
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 109 Open Access OpenAccess
Notes This work was supported by the Ministerio de Economía y Competitividad (MINECO, Spain), under the Grants MAT2013- 45168-R and MAT2016-77809-R. This study was also funded by the Xunta de Galicia/FEDER (ED431C 2016-048). We are grateful to the financial support from National Natural Science Foundation of China (21671010), Guangdong Science and Technology Program (2013A061401002), and Shenzhen Strategic Emerging Industries (KQCX2015032709315529, CXZZ20140419131807788). Approved Most recent IF: 7.367
Call Number EMAT @ emat @c:irua:145827UA @ admin @ c:irua:145827 Serial 4705
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F.
Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 22434-22441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413131700072 Publication Date 2017-09-11
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 30 Open Access OpenAccess
Notes ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S.
Title Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting Type A1 Journal article
Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 4 Issue 4 Pages 1700161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanoheterostructures based on metal oxide semiconductors have emerged

as promising materials for the conversion of sunlight into chemical energy.

In the present study, ZnO-based nanocomposites have been developed by

a hybrid vapor phase route, consisting in the chemical vapor deposition

of ZnO systems on fluorine-doped tin oxide substrates, followed by the

functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The

target systems are subjected to thermal treatment in air both prior and after

sputtering, and their properties, including structure, chemical composition,

morphology, and optical absorption, are investigated by a variety of characterization

methods. The obtained results evidence the formation of highly

porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3

or WO3 overlayer. Photocurrent density measurements for solar-triggered

water splitting reveal in both cases a performance improvement with respect

to bare zinc oxide, that is mainly traced back to an enhanced separation of

photogenerated charge carriers thanks to the intimate contact between the

two oxides. This achievement can be regarded as a valuable result in view of

future optimization of similar nanoheterostructured photoanodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411525700007 Publication Date 2017-05-15
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 30 Open Access OpenAccess
Notes The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.279
Call Number EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 Serial 4731
Permanent link to this record
 

 
Author Montanarella, F.; Altantzis, T.; Zanaga, D.; Rabouw, F.T.; Bals, S.; Baesjou, P.; Vanmaekelbergh, D.; van Blaaderen, A.
Title Composite Supraparticles with Tunable Light Emission Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 11 Pages 9136-9142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and finetuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411918200062 Publication Date 2017-09-26
Series Editor (up) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 36 Open Access OpenAccess
Notes We thank J. J. Geuchies for help with the optical analysis, W. Vlug for providing silica particles filled with RITC, J. D. Meeldijk for his assistance with SE-STEM measurements, E. B. van der Wee for help with the calculation of the radial distribution functions, and M. van Huis and S. Dussi for very fruitful discussions. This work was supported by the European Comission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). D.V. wishes to thank the Dutch FOM (program DDC13), NWO−CW (Toppunt 718.015.002), and the European Research Council under HORIZON 2020 (grant 692691 FIRSTSTEP) for financial support. A.v.B. and F.M. acknowledge partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC advanced grant agreement 291667: HierarSACol. S.B. and D.Z. acknowledge financial support from the European Research Council (starting grant no. COLOURATOM 335078), and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
Call Number EMAT @ emat @c:irua:146095UA @ admin @ c:irua:146095 Serial 4732
Permanent link to this record