toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 247401  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.  
  Address  
  Corporate Author Thesis  
  Publisher Amer physical soc Place of Publication College pk Editor  
  Language Wos 000377802200009 Publication Date 2016-06-14  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134601 Serial 4151  
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. doi  openurl
  Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 023506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000370258400056 Publication Date 2016-01-16  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:132318 Serial 4152  
Permanent link to this record
 

 
Author Sahin, H.; Torun, E.; Bacaksiz, C.; Horzum, S.; Kang, J.; Senger, R.T.; Peeters, F.M. pdf  url
doi  openurl
  Title Computing optical properties of ultra-thin crystals Type A1 Journal article
  Year 2016 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci  
  Volume 6 Issue 6 Pages 351-368  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2 , MoSe2, WS2, WSe2, h-AlN, h-BN, fluorographene, and graphane). Ultra-thin crystals are atomically thick-layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational, and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory. (C) 2016 John Wiley & Sons, Ltd WIREs Comput Mol Sci 2016, 6:351-368. doi: 10.1002/wcms.1252 For further resources related to this article, please visit the .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379267300002 Publication Date 2016-02-20  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-0876 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 14.016 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. J.K. is supported by a FWO Pegasus short Marie Curie Fellowship. ; Approved Most recent IF: 14.016  
  Call Number UA @ lucian @ c:irua:134649 Serial 4155  
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.; pdf  doi
openurl 
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B  
  Volume 136 Issue 136 Pages 1073-1080  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000367408100131 Publication Date 2015-11-10  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.887 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152  
  Call Number UA @ lucian @ c:irua:131075 Serial 4157  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume 55 Issue 55 Pages 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Yang, S.; Kang, J.; Yue, Q.; Coey, J.M.D.; Jiang, C. pdf  doi
openurl 
  Title Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets Type A1 Journal article
  Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 3 Issue 3 Pages 1500707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373149400011 Publication Date 2016-01-18  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 22 Open Access  
  Notes ; This work was supported by the National Natural Science Foundations of China (NSFC) under Grant No.51331001. The authors thank S. Tongay for giving them the ReS<INF>2</INF> crystals. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:133232 Serial 4159  
Permanent link to this record
 

 
Author Sadeghi, A.; Neek-Amal, M.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Diffusion of fluorine on and between graphene layers Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 014304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations and reactive force field molecular dynamics simulations, we study the structural properties and dynamics of a fluorine (F) atom, either adsorbed on the surface of single layer graphene (F/GE) or between the layers of AB stacked bilayer graphene (F@ bilayer graphene). It is found that the diffusion of the F atom is very different in those cases, and that the mobility of the F atom increases by about an order of magnitude when inserted between two graphene layers. The obtained diffusion constant for F/GE is twice larger than that experimentally found for gold adatom and theoretically found for C-60 molecule on graphene. Our study provides important physical insights into the dynamics of fluorine atoms between and on graphene layers and explains the mechanism behind the separation of graphite layers due to intercalation of F atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000349125800002 Publication Date 2015-01-08  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132561 Serial 4161  
Permanent link to this record
 

 
Author Lemoine, G.; Delannay, L.; Idrissi, H.; Colla, M.-S.; Pardoen, T. pdf  doi
openurl 
  Title Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films Type A1 Journal article
  Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 111 Issue 111 Pages 10-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A dislocation-based crystal plasticity model is developed in order to study the mechanical and creep/ relaxation behaviour of polycrystalline metallic thin films. The model accounts for the confinement of plasticity due to grain boundaries and for the anisotropy of individual grains, as well as for the significant viscoplastic effects associated to dislocation dominated thermally activated mechanisms. Numerical predictions are assessed based on experimental tensile test followed by relaxation on freestanding Pd films, based on an on-chip test technique. The dislocation-based mechanism assumption captures all the experimental trends, including the stress strain response, the relaxation behaviour and the dislocation density evolution, confirming the dominance of a dislocation driven deformation mechanism for the present Pd films with high defects density. The model has also been used to address some original experimental evidences involving back stresses, Bauschinger effect, backward creep and strain recovery. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000375812100002 Publication Date 2016-03-26  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 6 Open Access  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ lucian @ c:irua:133636 Serial 4162  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 286  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000363960900002 Publication Date 2015-10-30  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number UA @ lucian @ c:irua:129509 Serial 4166  
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P. url  doi
openurl 
  Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165112  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000373572700002 Publication Date 2016-04-09  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132872 Serial 4167  
Permanent link to this record
 

 
Author Pavlović, S.; Peeters, F.M. url  doi
openurl 
  Title Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 155410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000352591200005 Publication Date 2015-04-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132516 Serial 4170  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V. url  doi
openurl 
  Title Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 155417  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373760900004 Publication Date 2016-04-12  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133260 Serial 4171  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of bilayer graphene quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 115437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000361663700003 Publication Date 2015-09-24  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128726 Serial 4173  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Ketabi, S.A.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of hybrid monolayer-bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 165410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373572700004 Publication Date 2016-04-09  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO)-CNPq project between Flanders and Brazil and the Brazilian Science Without Borders program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133261 Serial 4174  
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.; doi  openurl
  Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 17109-17115  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number UA @ lucian @ c:irua:129434 Serial 4175  
Permanent link to this record
 

 
Author Ao, Z.; Jiang, Q.; Li, S.; Liu, H.; Peeters, F.M.; Li, S.; Wang, G. url  doi
openurl 
  Title Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 19659-19665  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361252400018 Publication Date 2015-08-24  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 35 Open Access  
  Notes ; We acknowledge the financial supports from the Chancellor's Research Fellowship Program of the University of Technology Sydney, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish Government. This research was also supported by the National Computational Infrastructure (NCI) through the merit allocation scheme and used the NCI resources and facilities in Canberra, Australia. ; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number UA @ lucian @ c:irua:128703 Serial 4177  
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Chen, C.Y.; Goux, L.; Govoreanu, B.; Degraeve, R.; Fantini, A.; Jurczak, M.; Pourtois, G. url  doi
openurl 
  Title First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 225107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378925400035 Publication Date 2016-06-10  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134651 Serial 4181  
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27636-27641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800043 Publication Date 2015-09-25  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129477 Serial 4182  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. pdf  doi
openurl 
  Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 141-148  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000368755500014 Publication Date 2015-11-05  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access  
  Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131589 Serial 4184  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Giant magnetic anisotropy in doped single layer molybdenum disulfide and fluorographene Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Stable monolayer materials based on existing, well known and stable two-dimensional crystal fluorographene and molybdenum disulfide are predicted to exhibit a huge magnetocrystalline anisotropy when functionalized with adsorbed transition metal atoms at vacant sides. Ab initio calculations within the density-functional theory formalism were performed to investigate the adsorption of the transitional metals in a single S (or F) vacancy of monolayer molybdenum disulfide (or fluorographene). We found strong bonding of the transitional metal atoms to the vacant sites with binding energies ranging from 2.5 to 5.2 eV. Our calculations revealed that these systems with adsorbed metal atoms exhibit a magnetic anisotropy, specifically the structures including Os and Ir show a giant magnetocrystalline anisotropy energy of 31-101 meV. Our results demonstrate the possibility of obtaining stable monolayer materials with huge magnetocrystalline anisotropy based on preexisting, well known and stable two-dimensional crystals: fluorographene and molybdenum disulfide. We believe that the results obtained here are useful not only for deeper understanding of the origin of magnetocrystalline anisotropy but also for the design of monolayer optoelectronic devices with novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700007 Publication Date 2016-04-13  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133611 Serial 4185  
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 12069-12073  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363396000031 Publication Date 2015-08-01  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ lucian @ c:irua:129457 Serial 4186  
Permanent link to this record
 

 
Author Peymanirad, F.; Neek Amal, M.; Beheshtian, J.; Peeters, F.M. url  doi
openurl 
  Title Graphene-silicene bilayer : a nanocapacitor with permanent dipole and piezoelectricity effect Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 155113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we study the electronic properties of a graphene-silicene bilayer (GSB). A single layer of silicene binds to the graphene layer with adhesion energy of about 25 meV/atom. This adhesion energy between the two layers follows accurately the well-known -1/z(2) dispersion energy as found between two infinite parallel plates. In small flakes of GSB with hydrogenated edges, negative charge is transferred from the graphene layer to the silicene layer, producing a permanent and a switchable polar bilayer, while in an infinite GSB, the negative charge is transferred from the silicene layer to the graphene layer. The graphene-silicene bilayer is a good candidate for a nanocapacitor with piezoelectric capabilities. We found that the permanent dipole of the bilayer can be tuned by an external perpendicular electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362493400002 Publication Date 2015-10-09  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128762 Serial 4188  
Permanent link to this record
 

 
Author Kang, J.; Horzum, S.; Peeters, F.M. url  doi
openurl 
  Title Heterostructures of graphene and nitrogenated holey graphene: Moire pattern and Dirac ring Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 195419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogenated holey graphene (NHG) is a recently synthesized two-dimensional material. In this paper the structural and electronic properties of heterostructures of graphene and NHG are investigated using first-principles and tight-binding calculations. Due to the lattice mismatch between NHG and graphene, the formation of a moire pattern is preferred in the graphene/NHG heterostructure, instead of a lattice-coherent structure. In moire-patterned graphene/NHG, the band gap opening at the K point is negligible, and the linear band dispersion of graphene survives. Applying an electric field modifies the coupling strength between the two atomic layers. The Fermi velocity upsilon(F) is reduced as compared to the one of pristine graphene, and its magnitude depends on the twist angle theta between graphene and NHG: For theta = 0 degrees, upsilon(F) is 30% of that of graphene, and it increases rapidly to a value of 80% with increasing theta. The heterostructure exhibits electron-hole asymmetry in upsilon(F), which is large for small theta. In NHG encapsulated between two graphene layers, a “Dirac ring” appears around the K point. Its presence is robust with respect to the relative stacking of the two graphene layers. These findings can be useful for future applications of graphene/NHG heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000364998000006 Publication Date 2015-11-19  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:130266 Serial 4189  
Permanent link to this record
 

 
Author da Costa; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 035415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379502200008 Publication Date 2016-07-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas No. 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation, under the process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, the Brazilian Program Science Without Borders (CsF), and the Lemann Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134947 Serial 4190  
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.; url  doi
openurl 
  Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 4 Pages 3127-3138  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000371077300040 Publication Date 2015-12-30  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 44 Open Access  
  Notes Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:132322 Serial 4191  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
 

 
Author Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369021400002 Publication Date 2016-01-18  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: