toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial (down) 7989  
Permanent link to this record
 

 
Author Blidar, A.; Trashin, S.; Carrion, E.N.; Gorun, S.M.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced photoelectrochemical detection of an analyte triggered by its concentration by a singlet oxygen-generating fluoro photosensitizer Type A1 Journal article
  Year 2020 Publication Acs Sensors Abbreviated Journal Acs Sensors  
  Volume 5 Issue 11 Pages 3501-3509  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A.M-1.cm(-2), respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595550100021 Publication Date 2020-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-3694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.9 Times cited Open Access  
  Notes Approved Most recent IF: 8.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:176057 Serial (down) 7913  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial (down) 7912  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. pdf  doi
openurl 
  Title Electrochemistry of intact versus degraded cephalosporin antibiotics facilitated by LC–MS analysis Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 4 Pages 2394-2402  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618089100063 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:176206 Serial (down) 7864  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal  
  Volume 13 Issue 7 Pages 1282-1294  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624902500001 Publication Date 2021-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:175583 Serial (down) 7863  
Permanent link to this record
 

 
Author Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R. url  doi
openurl 
  Title Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
  Year 2021 Publication Frontiers In Chemistry Abbreviated Journal Front Chem  
  Volume 9 Issue Pages 641147  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634708900001 Publication Date 2021-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.994 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.994  
  Call Number UA @ admin @ c:irua:177704 Serial (down) 7861  
Permanent link to this record
 

 
Author Moiseeva, E.O.; Trashin, S.; Korostei, Y.S.; Khan, S.U.; Kosov, A.D.; De Wael, K.; Dubinina, T.V.; Tomilova, L.G. pdf  url
doi  openurl
  Title Electrochemical and spectroelectrochemical studies of tert-butyl-substituted aluminum phthalocyanine Type A1 Journal article
  Year 2021 Publication Polyhedron Abbreviated Journal Polyhedron  
  Volume 200 Issue Pages 115136  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Tetra-tert-butylphthalocyanine aluminum (III) chloride was studied by voltammetric and potential-resolved spectroelectrochemical methods in a non-coordinating solvent o-dichlorobenzene. Five redox transitions were found including two oxidation waves at 0.18 and 0.90 V and three reduction waves at −1.28, −1.65, and −2.63 V vs. Fc+/Fc. Electrochemical reversibility of the first oxidation and reduction processes was assessed by using the diagnostic criteria of cyclic voltammetry. First comprehensive spectroelectrochemical characterization of oxidation of the aluminum phthalocyanine is reported. Moreover, potential-resolved spectroelectrochemical titration revealed strong influence of aggregation on the UV–vis spectra and the half-wave potentials of the first oxidation transition and disclosed the presence of the partially oxidized complex in the initial solution, which noticeably affected the spectrum of the neutral form.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386000006 Publication Date 2021-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-5387 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.926 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.926  
  Call Number UA @ admin @ c:irua:176389 Serial (down) 7860  
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; De Wael, K.; Samson, R. url  doi
openurl 
  Title Does leaf micro-morphology influence the recognition of particles on SEM images? Type A3 Journal article
  Year 2021 Publication International Journal of Environmental Pollution and Remediation Abbreviated Journal  
  Volume 9 Issue Pages 22-37  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Scanning electron microscopy (SEM) remains a popular approach to determine the shape, size, density and elemental composition of particles collected on leaf surfaces, but the effect of leaf micro-morphology on particle counts is not very well known. In this study, leaves of sixteen urban plant species were examined for particle density in June and September 2016 using SEM. The investigated plant species differed in leaf micro-morphology involving trichomes, raised stomata, epicuticular wax crystals and convex epidermal cells forming deep grooves between cells. The particle density on leaves of the investigated plant species was estimated by particle size fraction and leaf side. Particle density was significantly higher on the adaxial (AD) leaf side compared to the abaxial (AB) leaf side and higher for fine-particles than coarse-particles. The effect of trichome density on particle density of the AB and the AD leaf side was indicated to be significant and positive for both coarse and fine-particles in June but not in September. The successive repeated measurements elucidated that features constructing the topography of a leaf surface such as trichomes, stomata, and epidermal cells frequently contributed towards the edge enhancement effect, resulting in exaggerated particle counts. Besides, the mechanical drift contributed to the disparity in particle density measurements. Lastly, the reduction in particle density between successive measurements were imputed on the charging effect. These results enable us to suggest that in addition to characterization of micro-morphological features on a leaf surface, SEM will continue to be a useful approach for determining the particle: shape, size, elemental composition and density of the deposited particles. Nonetheless, the disparity in particle density measurements can occur due to abnormal particle recognition. Based on the results of September, we recommend that within-session successive repeated measurements (~ n ≥ 5) need to be performed to remove measurement uncertainties and obtain reliable quantitative data of particle counts using SEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181797 Serial (down) 7822  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial (down) 7762  
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Dardenne, P.; Baeten, V.; Pierna, J.-A.F.; Van Durme, F.; De Wael, K.; Samyn, N. doi  openurl
  Title Comparison of spectroscopic techniques combined with chemometrics for cocaine powder analysis Type A1 Journal article
  Year 2020 Publication Journal Of Analytical Toxicology Abbreviated Journal J Anal Toxicol  
  Volume 44 Issue 8 Pages 851-860  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC-MS) and gas chromatography with flame-ionization detection (GC-FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R-2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R-2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R-2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000606735000011 Publication Date 2020-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-4760; 1945-2403 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: 2.409  
  Call Number UA @ admin @ c:irua:175117 Serial (down) 7697  
Permanent link to this record
 

 
Author Zhang, T.; Schilling, W.; Khan, S.U.; Ching, H.Y.V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K.; Slabon, A.; Das, S. pdf  doi
openurl 
  Title Atomic-level understanding for the enhanced generation of hydrogen peroxide by the introduction of an aryl amino group in polymeric carbon nitrides Type A1 Journal article
  Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 11 Issue 22 Pages 14087-14101  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Heterogeneous catalysts are often & ldquo;black boxes & rdquo; due to the insufficient understanding of the detailed mechanisms at the catalytic sites. An atomic-level elucidation of the processes taking place in those regions is, thus, mandatory to produce robust and selective heterogeneous catalysts. We have improved the description of the whole reactive scenario for polymeric carbon nitrides (PCN) by combining atomic-level characterizations with magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, classical reactive molecular dynamics (RMD) simulations, and quantum chemistry (QC) calculations. We disclose the structure & minus;property relationships of an ad hoc modified PCN by inserting an aryl amino group that turned out to be very efficient for the production of H2O2. The main advancement of this work is the development of a difluoromethylene-substituted aryl amino PCN to generate H2O2 at a rate of 2.0 mM & middot;h & minus;1 under the irradiation of household blue LEDs and the identification of possible active catalytic sites with the aid of 15N and 19F MAS solid-state NMR without using any expensive labeling reagent. RMD simulations and QC calculations confirm and further extend the experimental descriptions by revealing the role and locations of the identified functionalities, namely, NH linkers, & minus;NH2 terminal groups, and difluoromethylene units, reactants, and products. <comment>Superscript/Subscript Available</comment  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000758012900020 Publication Date 2021-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.614  
  Call Number UA @ admin @ c:irua:187276 Serial (down) 7534  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial (down) 7491  
Permanent link to this record
 

 
Author Daems, E.; Dewaele, D.; Barylyuk, K.; De Wael, K.; Sobott, F. pdf  url
doi  openurl
  Title Aptamer-ligand recognition studied by native ion mobility-mass spectrometry Type A1 Journal article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume 224 Issue Pages 121917  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600787800122 Publication Date 2020-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:174086 Serial (down) 7490  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 145 Issue Pages 116447  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723747000009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:183268 Serial (down) 7460  
Permanent link to this record
 

 
Author Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V. url  doi
openurl 
  Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
  Year 2021 Publication Macroheterocycles Abbreviated Journal  
  Volume 14 Issue 1 Pages 40-50  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659682000003 Publication Date 2021-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179196 Serial (down) 7386  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial (down) 7190  
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep, M.; De Wael, K. url  doi
openurl 
  Title Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue 9 Pages eabl6769-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Optical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (approximate to 450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements. These small and challenging samples, typically encountering limitations with existing noninvasive methods such as macroscopic x-ray powder diffraction and mu Raman, were successfully characterized by O-PTIR, ultimately identifying the markers of glass-induced metal corrosion processes. The results clearly demonstrate how O-PTIR can be easily implemented in a noninvasive multianalytical strategy for the study of heritage materials, making it a fundamental tool for cultural heritage analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790020300013 Publication Date 2022-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:188642 Serial (down) 7184  
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
  Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem  
  Volume 904 Issue Pages 115878  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741151200005 Publication Date 2021-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.5  
  Call Number UA @ admin @ c:irua:184384 Serial (down) 7150  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K. url  doi
openurl 
  Title Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
  Year 2022 Publication Forensic chemistry Abbreviated Journal  
  Volume 27 Issue Pages 100383  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000725708200002 Publication Date 2021-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:183340 Serial (down) 7149  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 13 Pages 5221-5230  
  Keywords A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000786254500002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187522 Serial (down) 7141  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. pdf  url
doi  openurl
  Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
  Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages chem.202100029-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652651400001 Publication Date 2021-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 15 Open Access OpenAccess  
  Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:177495 Serial (down) 6787  
Permanent link to this record
 

 
Author Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes Type A1 Journal Article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume Issue Pages 122005  
  Keywords A1 Journal Article; Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES) ;  
  Abstract The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 μA μM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 μM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656959000033 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens. The authors acknowledge financial support from the University of Antwerp (IOF). Approved Most recent IF: 4.162  
  Call Number AXES @ axes @c:irua:174844 Serial (down) 6663  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial (down) 6662  
Permanent link to this record
 

 
Author Moro, G.; Barich, H.; Driesen, K.; Montiel, N.F.; Neven, L.; Mendonca, C.D.; Thiruvottriyur Shanmugam, S.; Daems, E.; De Wael, K. pdf  doi
openurl 
  Title Unlocking the full power of electrochemical fingerprinting for on-site sensing applications Type A1 Journal article
  Year 2020 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Electrochemical sensing for the semi-quantitative detection of biomarkers, drugs, environmental contaminants, food additives, etc. shows promising results in point-of-care diagnostics and on-site monitoring. More specifically, electrochemical fingerprint (EF)-based sensing strategies are considered an inviting approach for the on-site detection of low molecular weight molecules. The fast growth of electrochemical sensors requires defining the concept of direct electrochemical fingerprinting in sensing. The EF can be defined as the unique electrochemical signal or pattern, mostly recorded by voltammetric techniques, specific for a certain molecule that can be used for its quantitative or semi-quantitative identification in a given analytical context with specified circumstances. The performance of EF-based sensors can be enhanced by considering multiple features of the signal (i.e., oxidation or reduction patterns), in combination with statistical data analysis or sample pretreatments or by including electrode surface modifiers to enrich the EF. In this manuscript, some examples of EF-based sensors, strategies to improve their performances, and open challenges are discussed to unlock the full power of electrochemical fingerprinting for on-site sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523396300002 Publication Date 2020-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access  
  Notes ; The presented review is the result of a concerted effort and fruitful discussions among enthusiastic, young, and (for the occasion) female researchers of the AXES research group, each of them with specific expertise and background, under the guidance of the corresponding author. The authors acknowledge FWO-Flanders, BOF-UA, IOF-UA, FAPESP and EU for funding. ; Approved Most recent IF: 4.3; 2020 IF: 3.431  
  Call Number UA @ admin @ c:irua:168563 Serial (down) 6647  
Permanent link to this record
 

 
Author Van Loon, J.; De Jong, M.; De Wael, K.; Du Bois, E. file  isbn
openurl 
  Title Transposing testing from lab to on-site environment : a case of cocaine powder sampling Type P3 Proceeding
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract This paper reports on the transition process to convert a specific lab technique to the on-site, real-life environment. Bringing a lab test to an on-site environment involves many difficulties regarding to the context, people skills and environmental support. Within this project, a case about sampling for an electrochemical measurement, was investigated as a basis to reason upon some general conclusions related to the process of transposing lab-tests to an on-site environment. The current lab test was analysed and compared with a focus group discussion with future users. Based on the findings, assumptions for the new sampling technique in the specific case were formulated. New low-tech methods to achieve the sampling were extensively tested and verified. Starting from this chosen case an argumentation was set up to generalise the conclusions, by reasoning on other cases of products that already passed this transition to the field. Based on a comparison, we could discuss that the selected parameters related to impact of the context environment, of the people that should handle the tests, related to the reasons for transposing the technology, and related to the technology that will be transposed to the on-site environment, were of importance of almost all cases and can therefore be considered as context-independent and related to the transfer to on-site testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6384-131-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169896 Serial (down) 6637  
Permanent link to this record
 

 
Author Dubinina, T.V.; Moiseeva, E.O.; Astvatsaturov, D.A.; Borisova, N.E.; Tarakanov, P.A.; Trashin, S.A.; De Wael, K.; Tomilova, L.G. pdf  url
doi  openurl
  Title Novel 2-naphthyl substituted zinc naphthalocyanine : synthesis, optical, electrochemical and spectroelectrochemical properties Type A1 Journal article
  Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 44 Issue 19 Pages 7849-7857  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536157700023 Publication Date 2020-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access  
  Notes ; Synthesis, identification and optical studies of target compounds were supported by the Russian Science Foundation Grant No 19-73-00099. Electrochemical and spectroelectrochemical measurements were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No 18-53-76006 ERA). Fluorescence studies were supported by the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grant MD-3847.2019.3). The NMR spectroscopic measurements were carried out in the Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine of Moscow State University. ; Approved Most recent IF: 3.3; 2020 IF: 3.269  
  Call Number UA @ admin @ c:irua:168952 Serial (down) 6570  
Permanent link to this record
 

 
Author Mendonça, C.D.; Rahemi, V.; Hereijgers, J.; Breugelmans, T.; Machado, S.A.S.; De Wael, K. url  doi
openurl 
  Title Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide Type A1 Journal article
  Year 2020 Publication Electrochemistry Communications Abbreviated Journal Electrochem Commun  
  Volume 117 Issue Pages 106767-5  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The photoelectrochemical quantification of phenolic compounds such as hydroquinone (HQ) and 4-aminophenol (4-AP) is accomplished by integrating a photoelectrochemical cell into a flow injection analysis (FIA) setup. It is a well-known fact that during the electroanalysis of phenolic compounds, the electrode surface is susceptible to poisoning. However, electrode fouling can be reduced significantly by using the FIA system with periodic washing of the electrode. Reactive oxygen species (ROS), which are generated on the surface of TiO2 under UV light, can oxidize phenolic compounds such as 4-AP. The oxidized form of 4-AP is reduced back at the electrode surface, generating a measurable signal proportional to its concentration. The factors influencing the perfor-mance of the sensor, such as flow rate, applied potential for back reduction and pH, are investigated in detail. In the concentration range 0.0125-1.0 mu M, a linear correlation between the photocurrent and the concentration of 4-AP was observed with a sensitivity of 0.6 A M-1 cm(-2) and a limit of detection of 18 nM. A straightforward analytical methodology for the on-site, highly sensitive and low-cost quantification of phenolic compounds is presented, based on the use of TiO2 in a photoelectrochemical flow cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552618700004 Publication Date 2020-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited 1 Open Access  
  Notes ; The authors thank FAPESP funding for the fellowship to Camila D. Mendonca (Grant #2018/13724-0) and FWO funding (grant 12T4219N and 28761) for the postdoctoral fellowship to Dr. Vanoushe Rahemi and Dr. Jonas Hereijgers. ; Approved Most recent IF: 5.4; 2020 IF: 4.396  
  Call Number UA @ admin @ c:irua:169924 Serial (down) 6547  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K. url  doi
openurl 
  Title Gold-sputtered microelectrodes with built-in gold reference and counter electrodes for electrochemical DNA detection Type A1 Journal article
  Year 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Gold-sputtered microelectrodes with built-in gold reference and counter electrodes represent a promising platform for the development of disposable DNA sensors. Pretreating gold electrode surfaces and immobilization of DNA thereon is commonly employed in biosensing applications. However, with no scientific or practical guidelines to prepare a DNA sensor using these miniature gold-sputtered microelectrodes, cleaning and immobilization steps need to be systematically optimized and updated. In this work, we present efficient cleaning and modification of miniaturized gold-sputtered microelectrodes with thiolated DNA probes for DNA detection. Additional discussions on subtleties and nuances involved at each stage of pretreating and modifying gold-sputtered microelectrodes are included to present a robust, well-founded protocol. It was evident that the insights on cleaning polycrystalline gold disk electrodes with a benchmark electrode surface for DNA sensors, cannot be transferred to clean these miniature gold-sputtered microelectrodes. Therefore, a comparison between five different cleaning protocols was made to find the optimal one for gold-sputtered microelectrodes. Additionally, two principally different immobilization techniques for gold-sputtered microelectrode modification with thiolated ssDNA were compared i.e., immobilization through passive chemisorption and potential perturbation were compared in terms of thiol-specific attachment and thiol-unspecific adsorption through nitrogenous bases. The hybridization performance of these prepared electrodes was characterized by their sensitive complementary DNA capturing ability, detected by a standard alkaline phosphatase assay. Immobilization through passive chemisorption proved to be efficient in capturing the complementary target DNA with a detection limit of 0.14 nM and sensitivity of 9.38 A M−1 cm2. In general, this work presents a comprehensive understanding of cleaning, modification and performance of gold-sputtered microelectrodes with built-in gold reference and counter electrodes for both fundamental investigations and practical DNA sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592315100017 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number UA @ admin @ c:irua:172447 Serial (down) 6527  
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Dardenne, P.; Van Durme, F.; Baeten, V.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Evaluation of a calibration transfer between a bench top and portable Mid-InfraRed spectrometer for cocaine classification and quantification Type A1 Journal article
  Year 2020 Publication Talanta Abbreviated Journal Talanta  
  Volume 209 Issue Pages 120481  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A portable Fourier Transform Mid-InfraRed (FT-MIR) spectrometer using Attenuated Total Reflectance (ATR) sampling is used for daily routine screening of seized powders. Earlier, ATR-FT-MIR combined with Support Vector Machines (SVM) algorithms resulted in a significant improvement of the screening method to a reliable and straightforward classification and quantification tool for both cocaine and levamisole. However, can this tool be transferred to new (hand-held) devices, without loss of the extensive data set? The objective of this study was to perform a calibration transfer between a newly purchased bench top (BT) spectrometer and a portable (P) spectrometer with existing calibration models. Both instruments are from the same brand and have identical characteristics and acquisition parameters (FT instrument, resolution of 4 cm(-1) and wavenumber range 4000 to 500 cm(-1)). The original SVM classification model (n = 515) and SVM quantification model (n = 378) were considered for the transfer trial. Three calibration transfer strategies were assessed: 1) adjustment of slope and bias; 2) correction of spectra from the new instrument BT to P using Piecewise Direct Standardization (PDS) and 3) building a new mixed instrument model with spectra of both instruments. For each approach, additional cocaine powders were measured (n = 682) and the results were compared with GC-MS and GC-FID. The development of a mixed instrument model was the most successful in terms of performance. The future strategy of a mixed model allows applying the models, developed in the laboratory, to portable instruments that are used on-site, and vice versa. The approach offers opportunities to exchange data within a network of forensic laboratories using other FT-MIR spectrometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509632900016 Publication Date 2019-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.162  
  Call Number UA @ admin @ c:irua:166475 Serial (down) 6511  
Permanent link to this record
 

 
Author Morales-Yánez, F.; Trashin, S.; Sariego, I.; Roucher, C.; Paredis, L.; Chico, M.; De Wael, K.; Muyldermans, S.; Cooper, P.; Polman, K. url  doi
openurl 
  Title Electrochemical detection of Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador : association between active infection and high eosinophilia Type A1 Journal article
  Year 2020 Publication Parasites & Vectors Abbreviated Journal Parasite Vector  
  Volume 13 Issue 1 Pages 245-247  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Background The diagnosis of active Toxocara canis infections in humans is challenging. Larval stages of T. canis do not replicate in human tissues and disease may result from infection with a single T. canis larva. Recently, we developed a nanobody-based electrochemical magnetosensor assay with superior sensitivity to detect T. canis excretory-secretory (TES) antigens. Here, we evaluate the performance of the assay in children from an Ecuadorian birth cohort that followed children to five years of age. Methods Samples were selected based on the presence of peripheral blood eosinophilia and relative eosinophil counts. The samples were analyzed by the nanobody-based electrochemical magnetosensor assay, which utilizes a bivalent biotinylated nanobody as capturing agent on the surface of streptavidin pre-coated paramagnetic beads. Detection was performed by a different nanobody chemically labelled with horseradish peroxidase. Results Of 87 samples tested, 33 (38%) scored positive for TES antigen recognition by the electrochemical magnetosensor assay. The average concentration of TES antigen in serum was 2.1 ng/ml (SD = 1.1). The positive result in the electrochemical assay was associated with eosinophilia > 19% (P = 0.001). Parasitological data were available for 57 samples. There was no significant association between positivity by the electrochemical assay and the presence of other soil-transmitted helminth infections. Conclusions Our nanobody-based electrochemical assay provides highly sensitive quantification of TES antigens in serum and has potential as a valuable tool for the diagnosis of active human toxocariasis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535618800003 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-3305 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This project was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Flanders), project No. G.0189.13N. The ECUAVIDA cohort was funded by the Wellcome Trust (grant 072405/Z/03/Z and 088862/Z/09/Z). ; Approved Most recent IF: 3.2; 2020 IF: 3.08  
  Call Number UA @ admin @ c:irua:168966 Serial (down) 6501  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: