toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maes, D.; Van Passel, S. doi  openurl
  Title Interference of regional support policies on the economic and environmental performance of a hybrid cogeneration-solar panel energy system Type A1 Journal article
  Year 2012 Publication Energy Policy Abbreviated Journal Energ Policy  
  Volume 42 Issue Pages 670-680  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper assesses unintentional interference between different public policies promoting energy efficiency and renewable energy. The paper develops a methodology to study the interference by analysing the economic and technical behaviour of a hybrid energy system. The hybrid energy system in this case consists of an existing cogeneration unit extended with a new installation of thermal solar panels. This puts two complementary heating technologies in juxtaposition. The two technologies are supported with distinct regional support instruments in each region. The design and operation of the energy system is optimised from the point of view of the investor according to the different support instruments. The optimal configuration is analysed as well as its effect on reduced CO2-emissions during the lifetime of the project. The methodology is applied to a case-study for two neighbouring regions, the Netherlands and Flanders. The policies in the Netherlands show a beneficial synergy. In Flanders, the hybrid energy system is not interesting, indicating unbalanced high support for cogeneration in this case. From the point of view of the authorities, a more balanced regional policy as in the Netherlands provides a larger CO2-emission reduction for a smaller cost. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301616000066 Publication Date 2012-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.14 Times cited 4 Open Access  
  Notes ; The authors would especially like to thank Davy Duelen for the excellent case-study and data collection that enabled the present paper. The help and information provided by Pierre Gijsen also made the detailed assessment possible. We are also indebted to two anonymous reviewers, whose remarks strongly improved the paper. This project has been financed by the Impulse-project of the tUL (transnational University Limburg). ; Approved Most recent IF: 4.14; 2012 IF: 2.743  
  Call Number UA @ admin @ c:irua:127558 Serial (up) 6220  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D. doi  openurl
  Title Life cycle analyses of organic photovoltaics : a review Type A1 Journal article
  Year 2013 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume 6 Issue 11 Pages 3136-3149  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPVs). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp m(-2) and an energy payback time in the order of months for cells having 2% efficiency, thereby rendering OPV cells one of the best performing PV technologies from an environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials' side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. Consequently, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPVs are ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325946400002 Publication Date 2013-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 124 Open Access  
  Notes ; The authors are much obliged to both the INTERREG ORGAN-EXT project and FP7 MOLESOL project for their financial support, without which it would have been impossible to conduct this research. ; Approved Most recent IF: 29.518; 2013 IF: 15.490  
  Call Number UA @ admin @ c:irua:127548 Serial (up) 6223  
Permanent link to this record
 

 
Author Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J. doi  openurl
  Title Phytoremediation, a sustainable remediation technology? 2 : economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production Type A1 Journal article
  Year 2012 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 39 Issue Pages 470-477  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO2. Converting this in economic numbers through the Marginal Abatement Cost of CO2 ( 20 ton−1) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO2 abatement when using phytoremediation crops for land management ranges between 55 and 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over normal biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302829900054 Publication Date 2011-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 38 Open Access  
  Notes ; ; Approved Most recent IF: 3.219; 2012 IF: 2.975  
  Call Number UA @ admin @ c:irua:129863 Serial (up) 6236  
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. pdf  doi
openurl 
  Title Renewable energy development in rural areas of Iran Type A1 Journal article
  Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 65 Issue Pages 743-755  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383293800053 Publication Date 2016-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 41 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:137105 Serial (up) 6243  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Van Dael, M.; Van Passel, S.; Malina, R. pdf  doi
openurl 
  Title A review of sustainability indicators for biobased chemicals Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 94 Issue 94 Pages 115-126  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Companies dealing with chemical products have to cope with large amounts of waste and environmental risk due to the use and production of toxic substances. Against this background, increasing attention is being paid to green chemistry and the translation of this concept into biobased chemicals. Given the multitude of economic, environmental and societal impacts that the production and use of biobased chemicals have on sustainability, assessment approaches need to be developed that allow for measurement and comparison of these impacts. To evaluate sustainability in the context of policy and decision-making, indicators are generally accepted means. However, sustainability indicators currently predominantly exist for low-value applications in the bioeconomy, like bioenergy and biofuels. In this paper, a review of the state-of-the-art sustainability indicators for biobased chemicals is conducted and a gap analysis is performed to identify indicator development needs. Based on the analysis, a clear hierarchy within the concept of sustainability is found where the environmental aspect dominates over economic and social indicators. All one-dimensional indicator-sets account for environmental impacts (50%), whereas two-dimensional sets complement the environmental issues with economic indicators (34%). Moreover, even the sets encompassing all three sustainability dimensions (16%) do not account for the dynamics and interlinkages between the environment, economy and society. Using results from the literature review, an indicator list is presented that captures all indicators currently used within sustainability assessment of biobased chemicals. Finally, a framework is proposed for future indicator selection using a stakeholder survey to obtain a prioritized list of sustainability indicators for biobased chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446310000008 Publication Date 2018-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 17 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:154140 Serial (up) 6244  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Lemmens, B.; Van Passel, S. pdf  url
doi  openurl
  Title A review of the sustainability of algal-based biorefineries : towards an integrated assessment framework Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 876-887  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Algal-based bioenergy products have faced multiple economic and environmental problems. To counter these problems, algal-based biorefineries have been proposed as a promising solution. Multiple environmental and economic assessments have analyzed this concept. However, a wide variation in results was reported. This study performs a review to evaluate the methodological reasons behind this variation. Based on this review, four main challenges for a sustainability assessment were identified: 1) the use of a clear framework; 2) the adaptation of the methodology to all stages of technological maturity; 3) the use of harmonized assumptions; 4) the integration of the technological process. A generic methodology, based on the integration of a techno-economic assessment methodology and a streamlined life cycle assessment was proposed. This environmental techno-economic assessment can be performed following an iterative approach during each stage of technology development. In this way, crucial technological parameters can be directly identified and evaluated during the maturation of the technology. The use of this assessment methodology can therefore act as guidance to decrease the time-to-market for innovative and sustainable technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139038 Serial (up) 6245  
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S. pdf  url
doi  openurl
  Title Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 82 Issue 2 Pages 1839-1853  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423371300014 Publication Date 2017-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:149031 Serial (up) 6250  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Lizin, S.; Swinnen, G.; Azadi, H.; Van Passel, S. doi  openurl
  Title Solar cooking in Senegalese villages : an application of best-worst scaling Type A1 Journal article
  Year 2014 Publication Energy Policy Abbreviated Journal Energ Policy  
  Volume 67 Issue Pages 447-458  
  Keywords A1 Journal article; Sociology; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Dissemination programs of nontraditional cookstoves often fail. Nontraditional cookstoves aim to solve problems associated with biomass fuel usage in developing countries. Recent studies do not explain what drives user's cookstove choice. This study therefore builds a holistic framework that centralizes product-specific preferences or needs. The case study identifies product-specific factors that influence rural Senegalese inhabitants to switch to solar cooking, using best worst scaling. Looking at the preferences, the case study classified 126 respondents, in three distinct market segments with different solar cooking expectations. The paper identifies socio-demographic characteristics that explain these differences in the respondents' preferences. Finally, the respondent sample is divided in two groups: solar cooker owners and non-owners. When studied with regard to the same issue, solar cooker owners appear to value benefits of the solar cooker lower than non-owners. This is due to program factors (such as formations, after-sales network) and miscommunication (such as a wrong image of the solar cooker) that highly influenced the respondents' cookstove choice. As a conclusion, solar cookers and solar cooking programs are not always adapted to the needs and requirements of the end-users. Needs-oriented and end-user adopted strategies are necessary in order to successfully implement nontraditional cookstoves programs. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332815300043 Publication Date 2014-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215; 1873-6777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.14 Times cited 10 Open Access  
  Notes ; The authors thank the VLIR-UOS for their financial support and the Sol Suffit Program for their co-operation during the research. ; Approved Most recent IF: 4.14; 2014 IF: 2.575  
  Call Number UA @ admin @ c:irua:127544 Serial (up) 6251  
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S. pdf  url
doi  openurl
  Title Steering the adoption of battery storage through electricity tariff design Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 98 Issue 98 Pages 125-139  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The economic viability of electricity storage using batteries, under different tariff structures and system configurations, is investigated. The economic outcomes of the different combinations of tariff design and system configuration are evaluated. Based on a discussion of the relevant literature, the following tariff designs are used in the study: (i) fixed energy prices, (ii) real-time energy pricing, (iii) fixed rate capacity tariffs, and (iv) capacity dependent capacity tariffs. Next, the different simulated system configurations are outlined: (i) no battery storage, (ii) battery storage only, and (iii) battery storage and decentralized renewable energy production with PV. Our study provides insights for policy makers, showing that capacity block pricing only incentivises storage as part of an (existing) PV installation, while the combination of real time energy pricing and capacity block pricing promotes a wider adoption of battery storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450559100010 Publication Date 2018-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:153327 Serial (up) 6252  
Permanent link to this record
 

 
Author Moretti, M.; Njakou Djomo, S.; Azadi, H.; May, K.; De Vos, K.; Van Passel, S.; Witters, N. pdf  url
doi  openurl
  Title A systematic review of environmental and economic impacts of smart grids Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 888-898  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M/yr, while the benefits ranged from 0.04 to 804 M/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400006 Publication Date 2016-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 27 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. This research paper has been implemented within the GREAT (Growing Renewable Energy Applications and Technologies) project funded by the European INTERREG IVB North-Western Europe Programme. Nele Witters was financed by FWO (Research Foundation Flanders). ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139036 Serial (up) 6260  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L. doi  openurl
  Title The future of organic photovoltaic solar cells as a direct power source for consumer electronics Type A1 Journal article
  Year 2012 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 103 Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract As the search for marketable photovoltaic solar cells continues, organic photovoltaic (OPV) solar cells have been identified as a technology with many attractive features for commercialization. Most photovoltaic technologies on the market today were improved in the consumer electronics market segment. A similar evolution has been envisioned for OPV. Hence this paper investigates consumer preferences for solar cells directly powering consumer electronics. Choice experiments were designed and responses were collected using a random sample of 300 individuals from the Flemish region (northern part of Belgium). Results allow for computation of attribute importance, willingness to pay (WTP), and simulation of theoretical market share. These measures point towards OPV being able to reach considerable market share in the long run, bearing in mind that efforts are first needed in elevating OPV's efficiency and lifetime as they most determine consumers' preferences. Price is found to be the least important product characteristic for OPV solar cells to be incorporated in consumer electronics devices. We therefore warn against generalizing attributes' importance across the boundaries of market segments. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306044300001 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 25 Open Access  
  Notes ; The authors would kindly want to express their gratitude towards every survey respondent and participant for their preliminary work. Also the authors are much obliged to INTERREG and the ORGANEXT project for their financial support, without which it would have been impossible to conduct this research. Last but not least, we would like to thank the reviewers for their insightful comments which allowed for fine tuning our work. ; Approved Most recent IF: 4.784; 2012 IF: 4.630  
  Call Number UA @ admin @ c:irua:127556 Serial (up) 6267  
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Springael, J.; Van Passel, S. pdf  doi
openurl 
  Title Win-win possibilities through capacity tariffs and battery storage in microgrids Type A1 Journal article
  Year 2019 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 113 Issue 113 Pages 109238  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper investigates the impact of capacity tariff design on microgrids. While the possible benefits for utilities of capacity tariffs are well researched, comparatively little work has been done investigating the effects of capacity pricing on prosumers. Through simulating a grid connected microgrid and solving the day-ahead dispatch problem for a calendar year, we show that a well-designed capacity tariff will not only smooth out demand profiles, but could also lead to less erratic charge/discharge cycles in a real-time pricing scenario, lessening battery degradation. These results show that a properly designed capacity tariff has the potential to be beneficial for both the utilities as well as the battery-owning prosumer. Furthermore, we propose a new, heuristic approach to solve the day-ahead economic dispatch problem, which we prove to be effective and efficient. Additionally, we demonstrate that our novel approach does not impose mathematical restrictions such as continuous differentiability of the objective function. We show that the proposed capacity tariff achieves the stated aim of promoting battery storage uptake and that our novel method allows for compression and shorter run times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483422600019 Publication Date 2019-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.05 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:160566 Serial (up) 6279  
Permanent link to this record
 

 
Author Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S. pdf  url
doi  openurl
  Title Young people's acceptance of bioenergy and the influence of attitude strength on information provision Type A1 Journal article
  Year 2017 Publication Renewable Energy Abbreviated Journal Renew Energ  
  Volume 107 Issue Pages 417-430  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This study investigated the effects of using a standardized PowerPoint lecture to provide young people with nuanced information about bioenergy. The studys aim was to understand the relationship between knowledge and participants perception of bioenergy, and the relationship of the latter to participants attitude strength and intention to use and learn about bioenergy. Data were collected from 715 participants using a survey instrument that contained mainly Likert-scale questions. Data were then processed using partial least squares structural equation modelling. Results show that providing such information increases knowledge about bioenergy, but does relatively little to create a more positive perception of bioenergy. In turn, having a more positive view about bioenergy would lead to a higher intention to use bioenergy. Attitude strength was found to mediate the previous relationship and decreases the strength of the relationship between perception and intention to use. Results also show that the lecture weakly contributed to building attitude strength, rendering opinion change less likely in the future. We conclude that listening to a lecture on bioenergy slightly improves peoples perception of bioenergy, makes it more likely that people maintain such a disposition, and translates into a slightly higher intention to use bioenergy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396946900036 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 4.357 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO; grant number 12G5415N). The authors gratefully acknowledge Sara Leroi-Werelds (Hasselt University) for her valuable comments. ; Approved Most recent IF: 4.357  
  Call Number UA @ admin @ c:irua:140683 Serial (up) 6280  
Permanent link to this record
 

 
Author Daems, N.; De Mot, B.; Choukroun, D.; Van Daele, K.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T. url  doi
openurl 
  Title Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzer Type A1 Journal article
  Year 2019 Publication Sustainable energy & fuels Abbreviated Journal  
  Volume 4 Issue 4 Pages 1296-1311  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nickel-containing N-doped carbons were synthesized for the electrochemical reduction of CO2 to CO, which is a promising approach to reduce the atmospheric CO2 levels and its negative impact on the environment. Unfortunately, poor performance (activity, selectivity and/or stability) is still a major hurdle for the economical implementation of this type of materials. The electrocatalysts were prepared through an easily up-scalable and easily tunable method based on the pyrolysis of Ni-containing N-doped carbons. Ni–N–AC–B1 synthesized with a high relative amount of nitrogen and nickel with respect to carbon, was identified as the most promising candidate for this reaction based on its partial CO current density (4.2 mA cm−2), its overpotential (0.57 V) and its faradaic efficiency to CO (>99%). This results in unprecedented values for the current density per g active sites (690 A g−1 active sites). Combined with its decent stability and its high performance in an actual electrolyzer setup, this makes it a promising candidate for the electrochemical reduction of CO2 to CO on a larger scale. Finally, the evaluation of this kind of material in a flow-cell setup has been limited and to the best of our knowledge never included an evaluation of several crucial parameters (e.g. electrolyte type, anode composition and membrane type) and is an essential investigation in the move towards up-scaling and ultimately industrial application of this technique. This study resulted in an optimal cell configuration, consisting of Pt as an anode, Fumatech® as the membrane and 1 M KHCO3 and 2 M KOH as catholyte and anolyte, respectively. In conclusion, this research offers a unique combination of electrocatalyst development and reactor optimization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518690900030 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access OpenAccess  
  Notes ; The authors acknowledge sponsoring from the research foundation of Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). J. Hereijgers was supported through a postdoctoral fellowship (28761) of the Research Foundation Flanders (FWO). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-.nanced by the European Fund for Regional Development in the frame of subsidiary contract nr 2S03-019. This work was further performed in the framework of the Catalisti cluster SBO project CO2PERATE (“All renewable CCU based on formic acid integrated in an industrial microgrid”), with the.nancial support of VLAIO (Flemish Agency for Innovation and Entrepreneurship). This project.nally received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). We thank Karen Leyssens for helping with the N<INF>2</INF> physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. ; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165482 Serial (up) 6311  
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Kessels, R.; Valkering, P.; Laes, E. url  doi
openurl 
  Title Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs Type A1 Journal Article
  Year 2020 Publication Energy Policy Abbreviated Journal Energ Policy  
  Volume 137 Issue Pages 111183  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Winter peaks in Belgian electricity demand are significantly higher than the summer peaks, creating a greater potential for imbalances between demand and supply. This potential is exacerbated because of the risk of outages in its ageing nuclear power plants, which are being phased out in the medium term. This paper conducts a choice experiment to investigate the acceptability of a load control-based demand response program in the winter months. It surveys 186 respondents on their willingness to accept limits on the use of home appliances in return for a compensation. Results indicate that respondents are most affected by the days of the week that their appliance usage would be curtailed, and by the compensation they would receive. The willingness to enroll in a program increases with age, environmental consciousness, home ownership, and lower privacy concerns. The analysis predicts that 95% of the sample surveyed could enroll in a daily load control program for a compen- sation of €41 per household per year. Thus while an initial rollout among older and more pro-environment homeowners could be successful, a wider implementation would require an explanation of its environmental and financial benefits to the population, and a greater consideration of their data privacy concerns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515439900040 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4215 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9 Times cited Open Access  
  Notes The authors gratefully acknowledge the guidance offered by the Flemish Electricity Regulatory Agency (VREG), the Flemish Department for Environment, Nature, and Energy (LNE), and Guido Pepermans in designing the experiment. We are also grateful for the translations provided by Loic De Weerdt, and the support extended by Macarena MacLean Larrain in pre-testing the experiment. Finally, Roselinde Kes- sels thanks the Flemish Research Foundation (FWO) for her postdoctoral fellowship and the JMP Division of SAS Institute for further financial support. Approved Most recent IF: 9; 2020 IF: 4.14  
  Call Number ENM @ enm @c:irua:167253 Serial (up) 6348  
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Dewulf, J. url  doi
openurl 
  Title A review on learning effects in prospective technology assessment Type A1 journal article
  Year 2020 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 130 Issue Pages 109937  
  Keywords A1 journal article; Learning effects; Life cycle assessment; Techno-economic assessment; Prospective technology assessment; Learning-by-doing; Learning curve; Progress rate; Experience curve; Engineering Management (ENM) ;  
  Abstract Global environmental problems have urged the need for developing sustainable technologies. However, new technologies that enter the market have often higher economic costs and potentially higher environmental impacts than conventional technologies. This can be explained by learning effects: a production process that is performed for the first time runs less smooth than a production process that has been in operation for years. To obtain a fair estimation of the potential of a new technology, learning effects need to be included. A review on the current literature on learning effects was conducted in order to provide guidelines on how to include learning effects in prospective technology assessment. Based on the results of this review, five recommendations have been formulated and an integration of learning effects in the structure of prospective technology assessment has been proposed. These five recommendations include the combined use of learning effects on the component level and on the end product level; the combined use of learning effects on the technical, economic and environmental level; the combined use of extrapolated values and expert estimates; the combined use of learning-by-doing and learning-by-searching effects and; a tier-based method, including quality criteria, to calculate the learning effect. These five complementary strategies could lead to a clearer perspective on the environmental impact and cost structure of the new technology and a fairer comparison base with conventional technologies, potentially resulting in a faster adoption and a shorter time-to-market for sustainable technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548790900008 Publication Date 2020-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.9 Times cited Open Access  
  Notes The authors acknowledge the full financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). We would also like to thank the SDEWES conference for the best paper award which was granted to the current paper. The authors declare no competing financial interests. This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. Approved Most recent IF: 15.9; 2020 IF: 8.05  
  Call Number ENM @ enm @c:irua:170076 Serial (up) 6389  
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G. url  doi
openurl 
  Title Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps Type A1 Journal article
  Year 2020 Publication Frontiers in energy research Abbreviated Journal Front. Energy Res.  
  Volume 8 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is increasing interest in plasma technology for CO2 conversion because it can operate at mild conditions and it can store fluctuating renewable electricity into

value-added compounds and renewable fuels. This perspective paper aims to provide a view on the future for non-specialists who want to understand the role of plasma

technology in the new scenario for sustainable and low-carbon energy and chemistry. Thus, it is prepared to give a personal view on future opportunities and challenges. First, we introduce the current state-of-the-art and the potential of plasma-based CO2 conversion. Subsequently, we discuss the challenges to overcome the current limitations and to apply plasma technology on a large scale. The final section discusses the general context and the potential benefits of plasma-based CO2 conversion for our life and the impact on climate change. It also includes a brief analysis on the future scenario for energy and chemical production, and how plasma technology may realize new paths for CO2 utilization.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553392300001 Publication Date 2020-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-598X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182 – SCOPE ERC Synergy project). We thank A. Berthelot, M. Ramakers, R. Snoeckx, G. Trenchev, and V. Vermeiren for providing the figures used in this article. Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:170136 Serial (up) 6390  
Permanent link to this record
 

 
Author Yan, X.F.; Chen, Q.; Li, L.L.; Guo, H.Z.; Peng, J.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title High performance piezotronic spin transistors using molybdenum disulfide nanoribbon Type A1 Journal article
  Year 2020 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 75 Issue Pages 104953  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials are promising candidates for atomic-scale piezotronics and piezophototronics. Quantum edge states show fascinating fundamental physics such as nontrivial topological behavior and hold promising practical applications for low-power electronic devices. Here, using the tight-binding approach and quantum transport simulations, we investigate the piezotronic effect on the spin polarization of edge states in a zigzag-terminated monolayer MoS2 nanoribbon. We find that the strain-induced piezoelectric potential induces a phase transition of edge states from metal to semiconductor. However, in the presence of exchange field, edge states become semi-metallic with significant spin splitting and polarization that can be tuned by external strain. We show that quantum transport conductance exhibits a 100% spin polarization over a wide range of strain magnitudes. This effect is used in a propose prototype of piezotronic spin transistor. Our results provide a fundamental understanding of the piezotronic effect on edge states in zigzag monolayer MoS2 nanoribbons and are relevant for designing high-performance piezotronic spin devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560729200011 Publication Date 2020-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.6 Times cited 20 Open Access  
  Notes ; This work was supported by Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2078), Scientific Research Fund of Hunan Provincial Education Department (19A106), and the Funeral Service Foundation (FWO-VI). ; Approved Most recent IF: 17.6; 2020 IF: 12.343  
  Call Number UA @ admin @ c:irua:171123 Serial (up) 6535  
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R. url  doi
openurl 
  Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
  Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 206 Issue Pages 110300  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519653800038 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited 5 Open Access OpenAccess  
  Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784  
  Call Number UA @ admin @ c:irua:168668 Serial (up) 6544  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539083500049 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial (up) 6655  
Permanent link to this record
 

 
Author Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. url  doi
openurl 
  Title Challenges in the use of hydrogen for maritime applications Type A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume Issue Pages  
  Keywords A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications; Sustainable energy, air and water technology (DuEL)  
  Abstract Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621101100009 Publication Date 2021-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes For the completion of this work we would like to thank, Compagnie Maritime Belge for initial funding 9 of the research into maritime hydrogen storage and the University of Antwerp for funding of the 10 Doctoral Project that allowed for the completion of this work. Approved Most recent IF: 29.518  
  Call Number DuEL @ duel @c:irua:174754 Serial (up) 6668  
Permanent link to this record
 

 
Author Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Sanjuan Delmás, D.; Thomassen, G.; Dewulf, J. url  doi
openurl 
  Title The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework Type A1 Journal Article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 138 Issue Pages 110666  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Energy supply is essential for the functioning and well-being of a society. Decision-makers are faced with the challenge to balance burdens and benefits of energy supply practices with the aim to achieve environmental, economic, and social sustainability. Literature exhibits a broad variety of sustainability assessment frameworks for energy supply technologies. However, there is no consensus on which aspects need to be covered for a comprehensive assessment of sustainability. While some aspects, such as environmental emission damage, receive predominant attention, there is a lack of coverage and adequate quantification for others. This led in the past to an unbalanced basis for decision-making.

Based on an analysis of literature, 12 impact categories were identified for the assessment of energy technologies. The analysis included the judgement of quantification approaches regarding their significance for describing the impact categories and their maturity resulting in the proposal of 12 concrete indicators. A framework is proposed to manage and integrate the assessment of single impact categories. The framework produces normalized and weighted output indicators to use in the form of a dashboard or alternatively a single sustainability index for informed decision-making.

Finally, the proposed sustainability assessment framework relies on life cycle, local impact, and supply chain risks assessment. It consists of both well-established assessment methods as well as suggestions for new indicators in order to allow a full assessment of all impact categories. It thereby goes beyond the isolated assessment of impacts and offers the basis for comparison of complete energy supply mixes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Additional Links  
  Impact Factor 8.05 Times cited Open Access Not_Open_Access  
  Notes The authors acknowledge the financial support received from the Special Research Fund (Bijzonder Onderzoeksfonds – BOF) of Ghent University under grant agreement number BOF.24Y.2018.003. Approved Most recent IF: 8.05  
  Call Number ENM @ enm @ Serial (up) 6680  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 219 Issue Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial (up) 6706  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries Type A1 Journal article
  Year 2021 Publication Energy technology Abbreviated Journal  
  Volume 9 Issue 4 Pages 2100028  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surface coating is a crucial method to mitigate the aging problem of high-Ni cathode active materials (CAMs). By avoiding the direct contact of the CAM and the electrolyte, side reactions are hindered. Commonly used techniques like wet or ALD coating are time consuming and costly. Therefore, a more cost-effective coating technique is desirable. Herein, a facile and fast dry powder coating process for CAMs with nanostructured fumed metal oxides are reported. As the model case, the coating of high-Ni NMC (LiNi0.7Mn0.15Co0.15O2) by nanostructured fumed Al2O3 is investigated. A high coverage of the CAM surface with an almost continuous coating layer is achieved, still showing some porosity. Electrochemical evaluation shows a significant increase in capacity retention, cycle life and rate performance of the coated NMC material. The coating layer protects the surface of the CAM successfully and prevents side reactions, resulting in reduced solid electrolyte interface (SEI) formation and charge transfer impedance during cycling. A mechanism on how the coating layer enhances the cycling performance is hypothesized. The stable coating layer effectively prevents crack formation and particle disintegration of the NMC. In depth analysis indicates partial formation of LixAl2O3/LiAlO2 in the coating layer during cycling, enhancing lithium ion diffusivity and thus, also the rate performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621000700001 Publication Date 2021-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access OpenAccess  
  Notes The authors would like to thank Erik Peldszus and Steve Rienecker for the support with scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Funding from the Flemish Research Fund (FWO) project G0F1320N is acknowledged.; Open access funding enabled and organized by Projekt DEAL. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176670 Serial (up) 6724  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial (up) 6730  
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 5 Issue 6 Pages 1786-1800  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631643300013 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial (up) 6745  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. url  doi
openurl 
  Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume 14 Issue 5 Pages 2520-2534  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000639255800001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved Most recent IF: 29.518  
  Call Number PLASMANT @ plasmant @c:irua:178173 Serial (up) 6763  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial (up) 6823  
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 7 Pages 6777-6786  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678382900042 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access OpenAccess  
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180556 Serial (up) 6841  
Permanent link to this record
 

 
Author Biswas, A.N.; Winter, L.R.; Loenders, B.; Xie, Z.; Bogaerts, A.; Chen, J.G. pdf  url
doi  openurl
  Title Oxygenate Production from Plasma-Activated Reaction of CO2and Ethane Type A1 Journal article
  Year 2021 Publication Acs Energy Letters Abbreviated Journal Acs Energy Lett  
  Volume Issue Pages 236-241  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Upgrading ethane with CO2 as a soft oxidant represents a desirable means of obtaining oxygenated hydrocarbons. This reaction is not thermodynamically feasible under mild conditions and has not been previously achieved as a one-step process. Nonthermal plasma was implemented as an alternative means of supplying energy to overcome activation barriers, leading to the production of alcohols, aldehydes, and acids as well as C1−C5+ hydrocarbons under ambient pressure, with a maximum total oxygenate selectivity of 12%. A plasma chemical kinetic computational model was developed and found to be in good agreement with the experimental trends. Results from this study illustrate the potential to use plasma for the direct synthesis of value-added alcohols, acids, and aldehydes from ethane and CO2 under mild conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000732435700001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0012704 ; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; National Science Foundation, DGE 16-44869 ; This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Catalysis Science Program (grant no. DE-SC0012704). L.R.W. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program grant number DGE 16-44869. B.L. and A.B. acknowledge support from the FWO-SBO project PLASMA240 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184812 Serial (up) 6897  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: