|   | 
Details
   web
Records
Author Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial (down) 4556
Permanent link to this record
 

 
Author Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; Ueda, S.; Krick, A.L.; Verbeeck, J.; Bär, M.; Baxter, J.B.; May, S.J.
Title Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3(001) Heterointerface Type A1 Journal article
Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 4 Issue 4 Pages 1700183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer-resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X-ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406068400011 Publication Date 2017-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 14 Open Access Not_Open_Access
Notes The authors thank Dmytro Nykypanchuk for assistance with the near- infrared ellipsometry measurement of the LaMnO 3 film. S.Y.S., A.K.C., J.B.B, and S.J.M. acknowledge funding from the National Science Foundation under grant number ECCS-1201957. S.Y.S. acknowledges additional funding from the German Academic Exchange Service (DAAD) through the Research Internships in Science and Engineering (RISE) professional program 2015 ID 5708457. A.L.K. was funded by the National Science Foundation under grant number DMR-1151649. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Ellipsometry measurements of the LaMnO 3 film were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. S.U. would like to thank the staff of HiSOR, Hiroshima University, and JAEA/Spring-8 for the development of HAXPES at BL15XU of SPring-8. The HAXPES measurements were performed with approval of NIMS Synchrotron X-ray Station (Proposal No. 2015B4601), and were partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors also thank HZB for the allocation of synchrotron radiation beamtime for HAXPES/XANES measurements. R.G.W., R.F, and M.B. are grateful to the Impuls- und Vernetzungsfonds of the Helmholtz Association (VH-NG-423).; National Science Foundation, ECCS-1201957 DMR-1151649 ; Deutscher Akademischer Austauschdienst, 2015 ID 5708457 ; GOA project; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Flemish Government; U.S. Department of Energy, DE-ACO2-98CH10886 ; Vernetzungsfonds of the Helmholtz Association, VH-NG-423 ; Approved Most recent IF: 4.279
Call Number EMAT @ emat @ c:irua:142346UA @ admin @ c:irua:142346 Serial (down) 4553
Permanent link to this record
 

 
Author Ustarroz, J.; Geboes, B.; Vanrompay, H.; Sentosun, K.; Bals, S.; Breugelmans, T.; Hubin, A.
Title Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 16168-16177
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity towards the oxygen reduction reaction (ORR). Herein, we report on the infuence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (HUPD) and compared for the rst time to high angle annular dark eld scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of Pt roughened spheroids, which provide large roughness factor (Rf ) but low mass-speci c electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores protruding to the center of the structure. At the expense of smaller Rf , the obtained EASA values of these structures are in the range of these of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a signi cant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results to macroscopic electrochemical parameters indicated that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly a ected by the measurement itself.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401782500028 Publication Date 2017-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 24 Open Access OpenAccess
Notes Jon Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). S.B. and T.B. acknowledge the University of Antwerp for nancial support in the frame of a GOA project. H.V. gratefully acknowledges nancial support by the Flemish Fund for Scienti c Research (FWO Vlaanderen). All the authors acknowledge Laurens Stevaert for his contribution to the work presented in this manuscript. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:142345UA @ admin @ c:irua:142345 Serial (down) 4552
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J.
Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 9337-9347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400881100027 Publication Date 2017-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access OpenAccess
Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial (down) 4551
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume 26 Issue 38 Pages 6554-6559
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343763200004 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4095 ISBN Additional Links
Impact Factor 19.791 Times cited 34 Open Access
Notes Approved Most recent IF: 19.791; 2014 IF: NA
Call Number EMAT @ emat @ Serial (down) 4541
Permanent link to this record
 

 
Author Colin D. Judge, Nicolas Gauquelin, Lori Walters, Mike Wright, James I. Cole, James Madden, Gianluigi A. Botton, Malcolm Griffiths
Title Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen Type A1 Journal Article
Year 2015 Publication Journal of Nuclear Materials Abbreviated Journal
Volume 457 Issue 457 Pages 165-172
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In recent years, it has been observed that Inconel X-750 spacers in CANDU reactors exhibits lower ductility with reduced load carrying capacity following irradiation in a reactor environment. The fracture behaviour of ex-service material was also found to be entirely intergranular at high doses. The thermalized flux spectrum in a CANDU reactor leads to transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n, α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Microstructural examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix–precipitate interfaces. Helium bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips provide information that is consistent with crack propagation along grain boundaries due to the presence of He bubbles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349169100022 Publication Date 2014-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor Times cited 29 Open Access
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial (down) 4540
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A.
Title Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 5787-5799
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396969900037 Publication Date 2017-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:142202 Serial (down) 4537
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue Pages 021004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353650400004 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 58 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:134432 Serial (down) 4530
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Theoretical study of silicene and germanene Type P1 Proceeding
Year 2013 Publication Graphene, Ge/iii-v, And Emerging Materials For Post Cmos Applications 5 Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The structural and electronic properties of silicene and germanene on metallic and non-metallic substrates are investigated theoretically, using first-principles simulations. We first study the interaction of silicene with Ag(111) surfaces, focusing on the (4x4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), silicene is predicted to be semiconducting, with a computed energy gap of about 0.3 eV. However, the charge transfer occurring at the silicene/Ag(111) interface leads to an overall metallic system. We next investigate the interaction of silicene and germanene with hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (semiconducting) (0001) ZnS or ZnSe surfaces, silicene and germanene are found to be semiconducting. Remarkably, the nature (indirect or direct) and magnitude of their energy band gap can be controlled by an out-of-plane electric field.
Address
Corporate Author Thesis
Publisher Electrochemical soc inc Place of Publication Pennington Editor
Language Wos 000354468000006 Publication Date 2013-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-60768-374-2; 978-1-62332-023-2 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134451 Serial (down) 4529
Permanent link to this record
 

 
Author Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A.
Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000248062100011 Publication Date 2007-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Approved Most recent IF: 12.124; 2007 IF: 7.496
Call Number UA @ lucian @ c:irua:95083 Serial (down) 4521
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M.
Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume Issue Pages 115415
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000254542800167 Publication Date 2008-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:104033 Serial (down) 4517
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M.
Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type A1 Journal article
Year 2017 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 87 Issue 87 Pages 54-60
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000392681800009 Publication Date 2016-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access
Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 2.446
Call Number UA @ lucian @ c:irua:141535 Serial (down) 4498
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B.
Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 2 Pages 265-267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303382700005 Publication Date 2011-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:136430 Serial (down) 4497
Permanent link to this record
 

 
Author Krstajić, P.M.; Van Duppen, B.; Peeters, F.M.
Title Plasmons and their interaction with electrons in trilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem, and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The plasmaron spectrum is shifted with respect to the bare electron spectrum by ΔE(k)∼150−200meV for ABC stacked trilayer graphene and for ABA trilayer graphene by ΔE(k)∼30−150 meV[ ΔE(k) ∼1 −5meV] for the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked trilayer graphene, because of the different energy band structure and their different plasmon dispersion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327239200003 Publication Date 2013-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:112702 Serial (down) 4489
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
Year 2017 Publication APL materials Abbreviated Journal Apl Mater
Volume 5 Issue 5 Pages 036105
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398951000014 Publication Date 2017-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 21 Open Access OpenAccess
Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335
Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial (down) 4479
Permanent link to this record
 

 
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y.
Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 4443-4450
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395616200038 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access OpenAccess
Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:141720 Serial (down) 4472
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H.
Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 186 Issue 186 Pages 353-364
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000390621200044 Publication Date 2016-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.084
Call Number UA @ lucian @ c:irua:140333 Serial (down) 4465
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A.
Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 159 Issue 159 Pages 179-188
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000388053600021 Publication Date 2016-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 32 Open Access OpenAccess
Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784
Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial (down) 4450
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
Year 2016 Publication Dental materials Abbreviated Journal Dent Mater
Volume 32 Issue 12 Pages E327-E337
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000389516400003 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.07 Times cited 47 Open Access
Notes Approved Most recent IF: 4.07
Call Number UA @ lucian @ c:irua:140246 Serial (down) 4447
Permanent link to this record
 

 
Author Conings, B.; Bretschneider, S.A.; Babayigit, A.; Gauquelin, N.; Cardinaletti, I.; Manca, J.V.; Verbeeck, J.; Snaith, H.J.; Boyen, H.-G.
Title Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 8092-8099
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The power conversion efficiency of halide perovskite solar cells is heavily dependent on the perovskite layer being sufficiently smooth and pinhole-free. It has been shown that these features can be obtained even when starting out from rough and discontinuous perovskite film, by briefly exposing it to methylamine (MA) vapor. The exact underlying physical mechanisms of this phenomenon are, however, still unclear. By investigating smooth, MA treated films, based on very rough and discontinuous reference films of methylammonium triiode (MAPbI3), considering their morphology, crystalline features, local conductive properties, and charge carrier lifetime, we unravel the relation between their characteristic physical qualities and their performance in corresponding solar cells. We discover that the extensive improvement in photovoltaic performance upon MA treatment is a consequence of the induced morphological enhancement of the perovskite layer, together with improved electron injection into TiO2, which in fact compensates for an otherwise compromised bulk electronic quality, simultaneously caused by the MA treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396186000025 Publication Date 2017-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 43 Open Access OpenAccess
Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by FWO and Imec. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. The authors thank Tim Vangerven for Urbach energy determination, and Johnny Baccus and Jan Mertens for technical support. Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:140849 Serial (down) 4422
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A.
Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 25210-25224
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387737900007 Publication Date 2016-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 16 Open Access
Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial (down) 4414
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S.
Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 234 Issue 234 Pages 186-195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000383291400020 Publication Date 2016-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:137108 Serial (down) 4404
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial (down) 4395
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Toniato, E.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Fornasiero, P.;
Title Iron-titanium oxide nanocomposites functionalized with gold particles : from design to solar hydrogen production Type A1 Journal article
Year 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 3 Issue 3 Pages 1600348
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hematite-titania nanocomposites, eventually functionalized with gold nanoparticles (NPs), are designed and developed by a plasma-assisted strategy, consisting in: (i) the plasma enhanced-chemical vapor deposition of -Fe2O3 on fluorine-doped tin oxide substrates; the radio frequency-sputtering of (ii) TiO2, and (iii) Au in controlled amounts. A detailed chemicophysical characterization, carried out through a multitechnique approach, reveals that the target materials are composed by interwoven -Fe2O3 dendritic structures, possessing a high porosity and active area. TiO2 introduction results in the formation of an ultrathin titania layer uniformly covering Fe2O3, whereas Au sputtering yields a homogeneous dispersion of low-sized gold NPs. Due to the intimate and tailored interaction between the single constituents and their optical properties, the resulting composite materials are successfully exploited for solar-driven applications. In particular, promising photocatalytic performances in H-2 production by reforming of water-ethanol solutions under simulated solar illumination are obtained. The related insights, presented and discussed in this work, can yield useful guidelines to boost the performances of nanostructured photocatalysts for energy-related applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383783200021 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access
Notes Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:137154 Serial (down) 4389
Permanent link to this record
 

 
Author Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F.M.; Van Duppen, B.
Title Piezoelectricity in asymmetrically strained bilayer graphene Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 3 Pages 035015
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000384072500003 Publication Date 2016-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 10 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vl) through aspirant research grants to MVDD, CDB, and BVD. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:137203 Serial (down) 4361
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Atomic Collapse in Graphene Type P1 Proceeding
Year 2016 Publication Nanomaterials For Security Abbreviated Journal
Volume Issue Pages 3-17
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000386506200001 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138237 Serial (down) 4348
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I.
Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 9169-9180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391080900036 Publication Date 2016-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 80 Open Access OpenAccess
Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139513 Serial (down) 4344
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial (down) 4334
Permanent link to this record
 

 
Author Schalm, O.; Crabbé, A.; Storme, P.; Wiesinger, R.; Gambirasi, A.; Grieten, E.; Tack, P.; Bauters, S.; Kleber, C.; Favaro, M.; Schryvers, D.; Vincze, L.; Terryn, H.; Patelli, A.
Title The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach Type A1 Journal article
Year 2016 Publication Applied Physics A-Materials Science & Processing Abbreviated Journal Appl Phys A-Mater
Volume 122 Issue 122 Pages 903
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384753800033 Publication Date 2016-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links
Impact Factor 1.455 Times cited 9 Open Access
Notes The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent. Approved Most recent IF: 1.455
Call Number EMAT @ emat @ Serial (down) 4331
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.
Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 7578-7581
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387518500004 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 10 Open Access
Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial (down) 4320
Permanent link to this record