|   | 
Details
   web
Records
Author Bending, S.J.; Milošević, M.V.; Moshchalkov, V.V.
Title Polarity-dependent vortex pinning and spontaneous vortex-antivortex structures in superconductor/ferromagnet hybrids Type H1 Book chapter
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 299-322
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Springer Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-642-15136-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:106139 Serial 2659
Permanent link to this record
 

 
Author Peeters, F.M.; Baelus, B.J.; Milošević, M.V.
Title Vortex states in mescopic superconductors Type A1 Journal article
Year 2003 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 18 Issue Pages 312-315
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher (down) North-Holland Place of Publication Amsterdam Editor
Language Wos 000183534200144 Publication Date 2003-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2003 IF: 0.930
Call Number UA @ lucian @ c:irua:44989 Serial 3889
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.; Albino Aguiar, J.
Title Giant paramagnetic Meissner effect in multiband superconductors Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 12695
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate – even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000359143700001 Publication Date 2015-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 25 Open Access
Notes ; This work was supported by the Brazilian science agencies CAPES (PNPD 223038.003145/2011-00), CNPq (307552/2012-8, 141911/2012-3, and APV-4 02937/ 2013-9), and FACEPE (APQ-0202-1.05/10 and BCT-0278-1.05/11), the Flemish Science Foundation (FWO-Vl), and by the CNPq-FWO cooperation programme (CNPq 490297/2009-9). R.M.S. acknowledges support from the SRS PhD+ program of the University Cooperation for Development of the Flemish Interuniversity Council (VLIR-UOS). M.V.M. acknowledges support from CNPq (APV-4 02937/2013-9), FACEPE (APV-0034-1.05/14), and CAPES (BEX1392/11-5). ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127212 Serial 1339
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M.
Title Quantum rotor in nanostructured superconductors Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 4 Issue Pages 4542-4546
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000333555300007 Publication Date 2014-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 4 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:116848 Serial 2785
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 16515
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000364647700001 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 9 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129543 Serial 4224
Permanent link to this record
 

 
Author Curran, P.J.; Desoky, W.M.; Milošević, M.V.; Chaves, A.; Laloe, J.-B.; Moodera, J.S.; Bending, S.J.
Title Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 15569
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above T-c. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000363306000002 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 12 Open Access
Notes ; P.J.C. and S.J.B. acknowledge support from EPSRC in the UK under grant number EP/J010626/1 and the NanoSC COST Action MP-1201. M.V.M. thanks the Research Foundation-Flanders (FWO) and CAPES Brazil. A.C. acknowledges the financial support of CNPq, under the PRONEX/FUNCAP and PQ programs. J.-B.L. and J.S.M. acknowledge ONR Grant N00014-06-01-0235. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129450 Serial 4248
Permanent link to this record
 

 
Author Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V.
Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue Pages 35687
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000385919600001 Publication Date 2016-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 22 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:144636 Serial 4701
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Hernandez-Nieves, A.D.; Peeters, F.M.; Dominguez, D.
Title Microfluidic manipulation of magnetic flux domains in type-I superconductors : droplet formation, fusion and fission Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 12129
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The magnetic flux domains in the intermediate state of type-I superconductors are known to resemble fluid droplets, and their dynamics in applied electric current is often cartooned as a “dripping faucet”. Here we show, using the time-depended Ginzburg-Landau simulations, that microfluidic principles hold also for the determination of the size of the magnetic flux-droplet as a function of the applied current, as well as for the merger or splitting of those droplets in the presence of the nanoengineered obstacles for droplet motion. Differently from fluids, the flux-droplets in superconductors are quantized and dissipative objects, and their pinning/depinning, nucleation, and splitting occur in a discretized form, all traceable in the voltage measured across the sample. At larger applied currents, we demonstrate how obstacles can cause branching of laminar flux streams or their transformation into mobile droplets, as readily observed in experiments.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000411416700032 Publication Date 2017-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO) and the MINCYT-FWO FW/14/04 bilateral project. A.D.H. and D.D. acknowledge support from CONICET (Grant No. PIP111220150100218), CNEA and ANPCyT (Grant No. PICT2014-1382). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:146743 Serial 4789
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Neek-Amal, M.; Milošević, M.V.
Title Unconventional two-dimensional vibrations of a decorated carbon nanotube under electric field : linking actuation to advanced sensing ability Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 13481
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We show that a carbon nanotube decorated with different types of charged metallic nanoparticles exhibits unusual two-dimensional vibrations when actuated by applied electric field. Such vibrations and diverse possible trajectories are not only fundamentally important but also have minimum two characteristic frequencies that can be directly linked back to the properties of the constituents in the considered nanoresonator. Namely, those frequencies and the maximal deflection during vibrations are very distinctively dependent on the geometry of the nanotube, the shape, element, mass and charge of the nanoparticle, and are vastly tunable by the applied electric field, revealing the unique sensing ability of devices made of molecular filaments and metallic nanoparticles.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000413188600005 Publication Date 2017-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO) and Shahid Rajaee Teacher Training University. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:146672 Serial 4796
Permanent link to this record
 

 
Author Bekaert, J.; Bignardi, L.; Aperis, A.; van Abswoude, P.; Mattevi, C.; Gorovikov, S.; Petaccia, L.; Goldoni, A.; Partoens, B.; Oppeneer, P.M.; Peeters, F.M.; Milošević, M.V.; Rudolf, P.; Cepek, C.
Title Free surfaces recast superconductivity in few-monolayer MgB2 : combined first-principles and ARPES demonstration Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 14458
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like sigma-and pi-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as similar to 30 K for merely six monolayers thick MgB2. These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.'));
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000414231000059 Publication Date 2017-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 27 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Foundation for Fundamental Research on Matter (FOM)-part of the Netherlands Organisation for Scientific Research, the Swedish Research Council (VR) and the Rontgen-Angstrom Cluster. P.v.A. acknowledges an Ubbo Emmius fellowship for his PhD studies. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We thank D. Lonza for technical assistance in the experimental part. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:147426 Serial 4875
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S.
Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 8 Pages 2733
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000424630400046 Publication Date 2018-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 10 Open Access
Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940
Permanent link to this record
 

 
Author Pinto, N.; Rezvani, S.J.; Perali, A.; Flammia, L.; Milošević, M.V.; Fretto, M.; Cassiago, C.; De Leo, N.
Title Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 8 Pages 4710
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconductingto- normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.
Address
Corporate Author Thesis
Publisher (down) Nature Publishing Group Place of Publication London Editor
Language Wos 000427588300011 Publication Date 2018-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 37 Open Access
Notes ; We thank Antonio Bianconi, Mauro Doria and Vincenzo Lacquaniti for useful discussions. We acknowledge the collaboration with Federica Celegato for AFM analysis and Sara Quercetti for the electrical properties characterization. A. P. and N. P. acknowledge financial support from University of Camerino FAR project CESEMN. We also acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:150843UA @ admin @ c:irua:150843 Serial 4965
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B.
Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 12 Pages 123002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.
Address
Corporate Author Thesis
Publisher (down) Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000425774100001 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 65 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934
Permanent link to this record
 

 
Author Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V.
Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 024520
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381479500002 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135742 Serial 4303
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Verhelst, N.; Milošević, M.V.
Title Finite-temperature vortices in a rotating Fermi gas Type A1 Journal article
Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 023620
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived and they are in good agreement with available results of the Bogoliubov-de Gennes theory and with experimental data.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y. Editor
Language Wos 000381473100001 Publication Date 2016-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9934 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 6 Open Access
Notes ; We are grateful to G. C. Strinati and H. Warringa for valuable discussions. This research was supported by the Flemish Research Foundation Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by the Scientific Research Network of the Flemish Research Foundation, Grant No. WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.925
Call Number UA @ lucian @ c:irua:135686 Serial 4304
Permanent link to this record
 

 
Author Houben, K.; Couet, S.; Trekels, M.; Menendez, E.; Peissker, T.; Seo, J.W.; Hu, M.Y.; Zhao, J.Y.; Alp, E.E.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Bessas, D.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title Lattice dynamics in Sn nanoislands and cluster-assembled films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 15 Pages 155413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract To unravel the effects of phonon confinement, the influence of size and morphology on the atomic vibrations is investigated in Sn nanoislands and cluster-assembled films. Nuclear resonant inelastic x-ray scattering is used to probe the phonon densities of states of the Sn nanostructures which show significant broadening of the features compared to bulk phonon behavior. Supported by ab initio calculations, the broadening is attributed to phonon scattering and can be described within the damped harmonic oscillator model. Contrary to the expectations based on previous research, the appearance of high-energy modes above the cutoff energy is not observed. From the thermodynamic properties extracted from the phonon densities of states, it was found that grain boundary Sn atoms are bound by weaker forces than bulk Sn atoms.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000401762400008 Publication Date 2017-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the Concerted Research Action (GOA/14/007). The authors acknowledge Hercules stichting (Projects No. AKUL/13/19 and No. AKUL/13/25). K.H. and S.C. thank the FWO for financial support. T.P. acknowledges the IWT for financial support. S.R., M.V.M., and B.P. acknowledge TOPBOF funding of the University of Antwerp Research Fund. J.W.S. acknowledges Hercules Stichting (Project No. AKUL/13/19). The authors want to thank R. Lieten for help with the XRD measurements and T. Picot for fruitful discussions. The authors gratefully acknowledge R. Ruffer and A. I. Chumakov for fruitful discussions and the European Synchrotron Radiation Facility for the measurement of the SnO<INF>2</INF> powder at the Nuclear Resonance beamline (ID-18). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144305 Serial 4667
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094510
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000410166800008 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145623 Serial 4741
Permanent link to this record
 

 
Author Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V.
Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 10 Pages 104509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411076000012 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146750 Serial 4790
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 1 Pages 014503
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000419229100004 Publication Date 2018-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V.
Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 21 Pages 214403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000416846900002 Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147684 Serial 4890
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.
Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 22 Pages 224512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418653500012 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148504 Serial 4901
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V.
Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 13 Pages 134514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000430161500004 Publication Date 2018-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980
Permanent link to this record
 

 
Author Mulkers, J.; Hals, K.M.D.; Leliaert, J.; Milošević, M.V.; Van Waeyenberge, B.; Everschor-Sitte, K.
Title Effect of boundary-induced chirality on magnetic textures in thin films Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 6 Pages 064429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a C-infinity v symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Furthermore, we find that the surface twist due to the boundary-induced DMI strongly affects the width of the domain wall at the surfaces. We also find that the skyrmion radius increases in the depth of the film, with the average size of the skyrmion increasing with boundary-induced DMI. This increase suggests that the boundary-induced DMI contributes to the stability of the skyrmion.
Address
Corporate Author Thesis
Publisher (down) American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000443394600004 Publication Date 2018-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; The authors thank Matthias Sitte and Andre Thiaville for fruitful discussions. This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N and the German Research Foundation (DFG) under the Project No. EV 196/2-1. J.L. is supported by the Ghent University Special Research Fund with a BOF postdoctoral fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153706UA @ admin @ c:irua:153706 Serial 5093
Permanent link to this record
 

 
Author Grimaldi, G.; Leo, A.; Nigro, A.; Silhanek, A.V.; Verellen, N.; Moshchalkov, V.V.; Milošević, M.V.; Casaburi, A.; Cristiano, R.; Pace, S.
Title Controlling flux flow dissipation by changing flux pinning in superconducting films Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 20 Pages 202601-202601,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718309]
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000304265000051 Publication Date 2012-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 33 Open Access
Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:98946 Serial 504
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Dominguez, D.; Peeters, F.M.; Albino Aguiar, J.
Title Distinct magnetic signatures of fractional vortex configurations in multiband superconductors Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 23 Pages 232601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346266000066 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 22 Open Access
Notes ; This work was supported by the Brazilian science agencies CAPES (Grant No. PNPD 223038.003145/2011-00), CNPq (Grant Nos. 307552/2012-8, 141911/2012-3, and APV-4 02937/2013-9), and FACEPE (Grant Nos. APQ-0202-1.05/10 and BCT-0278-1.05/ 11), the Research Foundation Flanders (FWO-Vlaanderen), and by the CNPq-FWO cooperation programme (CNPq Grant No. 490297/2009-9). D.D. acknowledges support from CONICET, CNEA, and ANPCyT-PICT2011-1537. The authors thank A. A. Shanenko for extensive discussions on the topic. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122775 Serial 742
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Fluxonic cellular automata Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 91 Issue 21 Pages 212501,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000251105500023 Publication Date 2007-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 45 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:67176 Serial 1245
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V.
Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 3 Pages 032503,1-032503,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000273890500034 Publication Date 2010-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:81504 Serial 1400
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, T.; Stosic, B.; Lessa, R.; Milošević, M.V.
Title Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 1 Pages 012312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze the combined effect of three ingredients of an aggregation model-surface tension, particle flow and particle source-representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals.
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000341245400009 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 3 Open Access
Notes ; This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251 /2010-7, and No. 306719/2012-6). M.V.M. acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/11-5. The crystal structure appearing in Fig. 11 was provided courtesy of L. dos Santos, UFPE, Brazil. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:119267 Serial 1708
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Spatially dependent sensitivity of superconducting meanders as single-photon detectors Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 26 Pages 262603
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The photo-response of a thin current-carrying superconducting stripe with a 90 degrees turn is studied within the time-dependent Ginzburg-Landau theory. We show that the photon acting near the inner corner (where the current density is maximal due to the current crowding [J. R. Clem and K. K. Berggren, Phys. Rev. B 84, 174510 (2011)]) triggers the nucleation of superconducting vortices at currents much smaller than the expected critical one, but does not bring the system to a higher resistive state and thus remains undetected. The transition to the resistive state occurs only when the photon hits the stripe away from the corner due to there uniform current distribution across the sample, and dissipation is due to the nucleation of a kinematic vortex-antivortex pair near the photon incidence. We propose strategies to account for this problem in the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731627]
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000305831500057 Publication Date 2012-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). G. R. B. acknowledges individual support from FWO-VI. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:100336 Serial 3066
Permanent link to this record
 

 
Author Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V.
Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 22 Pages 222506,1-222506,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.
Address
Corporate Author Thesis
Publisher (down) American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000291405700044 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:90008 Serial 3652
Permanent link to this record