|   | 
Details
   web
Records
Author Somers, W.
Title Atomic scale simulations of the interactions of plasma species on nickel catalyst surfaces Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:127915 Serial 4142
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 435104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%).
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000365876300012 Publication Date 2015-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 23 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number UA @ lucian @ c:irua:130277 Serial 4153
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Fantini, A.; Goux, L.; Degraeve, R.; Govoreanu, B.; Pourtois, G.; Jurczak, M.
Title Intrinsic tailing of resistive states distributions in amorphous <tex>HfOx </tex> and TaOx based resistive random access memories Type A1 Journal article
Year 2015 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 36 Issue 36 Pages 769-771
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the ineffectiveness of programming oxide-based resistive random access memory (OxRAM) at low current with a program and verify algorithm due to intrinsic relaxation of the verified distribution to the natural state distribution obtained by single-pulse programming without verify process. Based on oxygen defect formation thermodynamics and on their diffusion barriers in amorphous HfOx and TaOx, we describe the intrinsic nature of tailing of the verified low resistive state and high resistive state distributions. We introduce different scenarios to explain fast distribution widening phenomenon, which is a fundamental limitation for OxRAM current scaling and device reliability.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000358570300011 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 33 Open Access
Notes Approved Most recent IF: 3.048; 2015 IF: 2.754
Call Number UA @ lucian @ c:irua:134412 Serial 4200
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 4 Issue 4 Pages 1295-1304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000370723300020 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited Open Access
Notes Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author Neyts, E.C.
Title The role of ions in plasma catalytic carbon nanotube growth : a review Type A1 Journal article
Year 2015 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 9 Issue 9 Pages 154-162
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract While it is well-known that the plasma-enhanced catalytic chemical vapor deposition (PECVD) of carbon nanotubes (CNTs) offers a number of advantages over thermal CVD, the influence of the various individual contributing factors is not well understood. Especially the role of ions is unclear, since ions in plasmas are generally associated with sputtering rather than with growing a material. Even so, various studies have demonstrated the beneficial effects of ion bombardment during the growth of CNTs. This review looks at the role of the ions in plasma-enhanced CNT growth as deduced from both experimental and simulation studies. Specific attention is paid to the beneficial effects of ion bombardment. Based on the available literature, it can be concluded that ions can be either beneficial or detrimental for carbon nanotube growth, depending on the exact conditions and the control over the growth process.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000360319600003 Publication Date 2015-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 8 Open Access
Notes Approved Most recent IF: 1.712; 2015 IF: NA
Call Number UA @ lucian @ c:irua:127815 Serial 4239
Permanent link to this record
 

 
Author Ali, S.; Myasnichenko, V.S.; Neyts, E.C.
Title Size-dependent strain and surface energies of gold nanoclusters Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 792-800
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Gold nanocluster properties exhibit unique size-dependence. In this contribution, we employ reactive molecular dynamics simulations to calculate the size- and temperature-dependent surface energies, strain energies and atomic displacements for icosahedral, cuboctahedral, truncated octahedral and decahedral Au-nanoclusters. The calculations demonstrate that the surface energy decreases with increasing cluster size at 0 K but increases with size at higher temperatures. The calculated melting curves as a function of cluster size demonstrate the Gibbs-Thomson effect. Atomic displacements and strain are found to strongly depend on the cluster size and both are found to increase with increasing cluster size. These results are of importance for understanding the size-and temperature-dependent surface processes on gold nanoclusters.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge Editor
Language Wos 000369480600017 Publication Date 2015-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 37 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:131626 Serial 4243
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.
Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us
Volume 31 Issue 1 Pages 52-59
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Springfield, Or. Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record
Impact Factor 0.466 Times cited Open Access
Notes Approved Most recent IF: 0.466
Call Number UA @ lucian @ c:irua:131601 Serial 4278
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neyts, E.C.; Partoens, B.
Title van der Waals density functionals applied to corundum-type sesquioxides : bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 23139-23146
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract van der Waals (vdW) forces play an important role in the adsorption of molecules on the surface of solids. However, the choice of the most suitable vdW functional for different systems is an essential problem which must be addressed for different systems. The lack of a systematic study on the performance of the vdW functionals in the bulk and adsorption properties of metal-oxides motivated us to examine different vdW approaches and compute the bulk and molecular adsorption properties of alpha-Cr2O3, alpha-Fe2O3, and alpha-Al2O3. For the bulk properties, we compared our results for the heat of formation, cohesive energy, lattice parameters and bond distances between the different vdW functionals and available experimental data. Next we studied the adsorption of benzene and CH3 molecules on top of different oxide surfaces. We employed different approximations to exchange and correlation within DFT, namely, the Perdew-Burke-Ernzerhof (PBE) GGA, (PBE)+U, and vdW density functionals [ DFT(vdW-DF/DF2/optPBE/optB86b/optB88)+U] as well as DFT-D2/D3(+U) methods of Grimme for the bulk calculations and optB86b-vdW(+U) and DFT-D2(+U) for the adsorption energy calculations. Our results highlight the importance of vdW interactions not only in the adsorption of molecules, but importantly also for the bulk properties. Although the vdW contribution in the adsorption of CH3 (as a chemisorption interaction) is less important compared to the adsorption of benzene (as a physisorption interaction), this contribution is not negligible. Also adsorption of benzene on ferryl/chromyl terminated surfaces shows an important chemisorption contribution in which the vdW interactions become less significant.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge Editor
Language Wos 000382109300040 Publication Date 2016-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 6 Open Access
Notes ; This work was supported by the Strategic Initiative Materials in Flanders (SIM). The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:135701 Serial 4311
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H.
Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume 186 Issue 186 Pages 353-364
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Lausanne Editor
Language Wos 000390621200044 Publication Date 2016-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.084
Call Number UA @ lucian @ c:irua:140333 Serial 4465
Permanent link to this record
 

 
Author De Bie, C.
Title Fluid modeling of the plasma-assisted conversion of greenhouse gases to value-added chemicals in a dielectric barrier discharge Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138591 Serial 4466
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Couet, S.; Stokbro, K.; Pourtois, G.
Title Oscillatory behavior of the tunnel magnetoresistance due to thickness variations in Ta vertical bar CoFe vertical bar MgO magnetic tunnel junctions : a first-principles study Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 094424
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To investigate the impact of both the CoFe ferromagnetic layer thickness and the capping paramagnetic layer on the tunnel magnetoresistance (TMR), we performed first-principles simulations on epitaxial magnetic tunnel junctions contacted with either CoFe or Ta paramagnetic capping layers. We observed a strong oscillation of the TMR amplitude with respect to the thickness of the ferromagnetic layer. The TMR is found to be amplified whenever the MgO spin tunnel barrier is thickened. Quantization of the electronic structure of the ferromagnetic layers is found to be at the origin of this oscillatory behavior. Metals such as Ta contacting the magnetic layer are found to enhance the amplitude of the oscillations due to the occurrence of an interface dipole. The latter drives the band alignment and tunes the nature of the spin channels that are active during the tunneling process. Subsequently, the regular transmission spin channels are modulated in the magnetic tunnel junction stack and other complex ones are being activated.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000383860700004 Publication Date 2016-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137122 Serial 4468
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas'ev, V.; Stesmans, A.
Title Silicene nanoribbons on transition metal dichalcogenide substrates : effects on electronic structure and ballistic transport Type A1 Journal article
Year 2016 Publication Nano Research Abbreviated Journal Nano Res
Volume 9 Issue 9 Pages 3394-3406
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green's functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000386770300018 Publication Date 2016-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 2 Open Access
Notes Approved Most recent IF: 7.354
Call Number UA @ lucian @ c:irua:138210 Serial 4469
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S.
Title Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 28 Issue 28 Pages 04LT01
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Bristol Editor
Language Wos 000391445100001 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 13 Open Access OpenAccess
Notes Approved Most recent IF: 3.44
Call Number UA @ lucian @ c:irua:140382 Serial 4471
Permanent link to this record
 

 
Author Tambuyzer, B.R.; Bergwerf, I.; de Vocht, N.; Reekmans, K.; Daans, J.; Jorens, P.G.; Goossens, H.; Ysebaert, D.K.; Chatterjee, S.; Van Marck, E.; Berneman, Z.N.; Ponsaerts, P.
Title Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation Type A1 Journal article
Year 2009 Publication Immunology and cell biology Abbreviated Journal Immunol Cell Biol
Volume Issue Pages
Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although adult and embryonic stem cell-based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell-based therapy for CNS injury will likely be performed using well-characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow-derived stromal cells (BM-SC) after implantation in murine CNS. For this, we first investigated the impact of autologous and allogeneic BM-SC on microglia activation in vitro. Although the results indicate that both autologous and allogeneic BM-SC do not activate microglia themselves in vitro, they also do not inhibit activation of microglia after exogenous stimuli in vitro. Next, we investigated the impact of allogeneic BM-SC on microglia activation in vivo. In contrast to the in vitro observations, microglia become highly activated in vivo after implantation of allogeneic BM-SC in the CNS of immune-competent mice. Moreover, our results suggest that microglia, rather than T-cells, are the major contributors to allograft rejection in the CNS.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Adelaide Editor
Language Wos 000266208800003 Publication Date 2009-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0818-9641 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.557 Times cited 31 Open Access
Notes Approved Most recent IF: 4.557; 2009 IF: 4.200
Call Number UA @ lucian @ c:irua:74903 Serial 4515
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M.
Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume Issue Pages 115415
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Lancaster, Pa Editor
Language Wos 000254542800167 Publication Date 2008-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:104033 Serial 4517
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cambridge Editor
Language Wos 000332395700048 Publication Date 2014-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A.
Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).
Address
Corporate Author Thesis
Publisher (down) Place of Publication Weinheim Editor
Language Wos 000248062100011 Publication Date 2007-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Approved Most recent IF: 12.124; 2007 IF: 7.496
Call Number UA @ lucian @ c:irua:95083 Serial 4521
Permanent link to this record
 

 
Author Bleiner, D.; Altorfer, H.
Title A novel gas inlet system for improved aerosol entrainment in laser ablation inductively coupled plasma mass spectrometry Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In order to minimize the dead volume in large cells for laser ablation inductively coupled plasma mass spectrometry, and improve the aerosol entrainment characteristics, the gas inlet nozzle has been set in rotation. This allowed a wider volume to be swept than with the traditional static inlet nozzle approach. Therefore, sensitivity combined with site-to-site repeatability was improved by a factor of two, together with minimization of aerosol loss within the cell and signal dispersion.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000231246900013 Publication Date 2005-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99309 Serial 4524
Permanent link to this record
 

 
Author Bleiner, D.; Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.
Title Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling Type A1 Journal article
Year 2005 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The laser ablation-induced plasma was used as a composition-con trolled source for ion implantation in Si crystals. Then, laser ablation in combination with inductively coupled plasma mass spectrometry was used for the elemental depth profiling of the implanted samples. Monte Carlo simulations permitted us to conclude that a depth resolution of tens of nm would be necessary to define the shape of the implantation profiles, as is obtained using XPS and RBS, whereas a hundred nm depth resolution is sufficient to determine the total implanted dose. The detection power of LA-ICP-MS would routinely allow rapid analytical control on the trace level implanted dose. Nevertheless, this technique is limited in terms of depth profiling resolution due to pulse mixing and signal tailing induced during the aerosol transport. Raw signal processing procedures were developed for the minimization of shapeline dispersion, deconvolution of pulse mixing and more appropriate assessment of the implanted profiles. Shapeline dispersion could be corrected for by determining the signal waning constant and implementing this information for a non-affine alibi transformation of the LA-ICP-MS signal traces. Pulse mixing deconvolution was attained with an algorithm that considered accumulated signal intensity due to pulse-on-pulse stacking, i.e., the latest pulse on top of all antecedent individual pulses' exponential tails proportionally.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000233958900018 Publication Date 2005-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 26 Open Access
Notes Approved Most recent IF: 3.379; 2005 IF: 3.640
Call Number UA @ lucian @ c:irua:99278 Serial 4525
Permanent link to this record
 

 
Author Bergwerf, I.; de Vocht, N.; Tambuyzer, B.; Verschueren, J.; Reekmans, K.; Daans, J.; Ibrahimi, A.; Van Tendeloo, V.; Chatterjee, S.; Goossens, H.; Jorens, P.G.; Baekelandt, V.; Ysebaert, D.; Van Marck, E.; Berneman, Z.N.; Van Der Linden, A.; Ponsaerts, P.
Title Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice Type A1 Journal article
Year 2009 Publication BMC biotechnology Abbreviated Journal Bmc Biotechnol
Volume Issue Pages
Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. Results In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-ã-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. Conclusion We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000262698500001 Publication Date 2009-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1472-6750 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.415 Times cited 33 Open Access
Notes Approved Most recent IF: 2.415; 2009 IF: 2.723
Call Number UA @ lucian @ c:irua:72911 Serial 4527
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B.
Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
Year 2017 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 7 Issue 7 Pages 4453-4459
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000393751300030 Publication Date 2017-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:141543 Serial 4528
Permanent link to this record
 

 
Author Neyts, E.C.; Bal, K.M.
Title Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 6 Pages e1600158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The catalytic oxidative dehydrogenation of hydrocarbons is an industrially important process, in which selectivity is a key issue. We here investigate the conversion of methanol to formaldehyde on a vanadia surface employing long timescale simulations, reaching a time scale of seconds. In particular, we compare the thermal process to the case where an additional external electric field is applied, as would be the case in a direct plasma-catalysis setup. We find that the electric field influences the retention time of the molecules at the catalyst surface. These simulations provide an atomic scale insight in the thermal catalytic oxidative dehydrogenation process, and in how an external electric field may affect this process.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Weinheim Editor
Language Wos 000403699900013 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.846
Call Number UA @ lucian @ c:irua:144210 Serial 4647
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R.
Title INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb
Volume 17 Issue Pages 154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)
Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000402116300002 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.263 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 2.263
Call Number UA @ lucian @ c:irua:143234 Serial 4663
Permanent link to this record
 

 
Author Kamaraj, B.; Purohit, R.
Title Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4)A Molecular Dynamics Approach Type A1 Journal article
Year 2016 Publication Journal of cellular biochemistry Abbreviated Journal J Cell Biochem
Volume 117 Issue 11 Pages 2608-2619
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication New York, N.Y. Editor
Language Wos 000383626800017 Publication Date 2016-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-2312 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.085 Times cited 28 Open Access
Notes Approved Most recent IF: 3.085
Call Number UA @ lucian @ c:irua:144634 Serial 4671
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A.
Title Nitrogen fixation by gliding arc plasma : better insight by chemical kinetics modelling Type A1 Journal article
Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume 10 Issue 10 Pages 2145-2157
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale HaberBosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Weinheim Editor
Language Wos 000402122100006 Publication Date 2017-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 42 Open Access OpenAccess
Notes Approved Most recent IF: 7.226
Call Number UA @ lucian @ c:irua:143261 Serial 4672
Permanent link to this record
 

 
Author Kong, L.; Wang, W.; Murphy, A.B.; Xia, G.
Title Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 16 Pages 165203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in microthruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of microthruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000398856300001 Publication Date 2017-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 8 Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:143642 Serial 4674
Permanent link to this record
 

 
Author Van Laer, K.
Title Numerical and experimental study of a packed bed plasma reactor for environmental applications Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144061 Serial 4675
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Origin of the apparent delocalization of the conduction band in a high-mobility amorphous semiconductor Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue 25 Pages 255702
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we show that the apparent delocalization of the conduction band reported from first-principles simulations for the high-mobility amorphous oxide semiconductor InGaZnO4 (a-IGZO) is an artifact induced by the periodic conditions imposed to the model. Given a sufficiently large unit-cell dimension (over 40 angstrom), the conduction band becomes localized. Such a model size is up to four times the size of commonly used models for the study of a-IGZO. This finding challenges the analyses done so far on the nature of the defects and on the interpretation of numerous electrical measurements. In particular, we re-interpret the meaning of the computed effective mass reported so far in literature. Our finding also applies to materials such as SiZnSnO, ZnSnO, InZnSnO, In2O3 or InAlZnO4 whose models have been reported to display a fully delocalized conduction band in the amorphous phase.
Address
Corporate Author Thesis
Publisher (down) Place of Publication London Editor
Language Wos 000402434900002 Publication Date 2017-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:144183 Serial 4676
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 214 Issue 6 Pages 1600889
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Wos 000403339900012 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:144219 Serial 4678
Permanent link to this record
 

 
Author Snoeckx, R.
Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:143110 Serial 4680
Permanent link to this record