|   | 
Details
   web
Records
Author De Backer, J.; Maric, D.; Zuhra, K.; Bogaerts, A.; Szabo, C.; Vanden Berghe, W.; Hoogewijs, D.
Title Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response Type A1 Journal article
Year 2022 Publication (down) Antioxidants Abbreviated Journal Antioxidants
Volume 11 Issue 8 Pages 1548
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000846411000001 Publication Date 2022-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7
Call Number PLASMANT @ plasmant @c:irua:190686 Serial 7102
Permanent link to this record
 

 
Author Attri, P.; Bogaerts, A.
Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
Year 2019 Publication (down) Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me
Volume 19 Issue 4 Pages 436-438
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472726300001 Publication Date 2019-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1871-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.598 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.598
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Liang, D.; Aerts, A.; Aerts, C.A.; Kremer, S.P.B.; Jacobs, P.A.; Van Tendeloo, G.; Martens, J.A.
Title On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1 : reply Type L1 Letter to the editor
Year 2004 Publication (down) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 43 Issue 35 Pages 4562-4564
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000224008400003 Publication Date 2004-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access
Notes Fwo; Iap-Pai Approved Most recent IF: 11.994; 2004 IF: 9.161
Call Number UA @ lucian @ c:irua:103253 Serial 2457
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Breesch, A.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Sels, B.; Jacobs, P.
Title Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite Type A1 Journal article
Year 2011 Publication (down) Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 50 Issue 17 Pages 3947-3949
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Well tuned: ZSM-5 with platinum nanoparticles preferably hydrogenates trans fatty acids over cis isomers in model triacylglycerols for geometric reasons. The central fatty acid chain reacts faster, pointing to pore mouth adsorption in a tuning fork conformation (see picture). This conformation induces stepwise hydrogenation, resulting in fast removal of the unstable central triene, while formation of saturated chains is limited.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000289514100025 Publication Date 2011-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 31 Open Access
Notes Approved Most recent IF: 11.994; 2011 IF: 13.455
Call Number UA @ lucian @ c:irua:88381 Serial 3814
Permanent link to this record
 

 
Author Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A.
Title Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction Type A1 Journal article
Year 2020 Publication (down) Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO(2)emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NO(x)trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol(-1)NH(3), which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N(2)and H(2)with reasonable yield (>1 %).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580489400001 Publication Date 2020-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access
Notes ; We gratefully acknowledge the financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:173589 Serial 6634
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of glow discharges: what can we learn from it? Type A3 Journal article
Year 1997 Publication (down) Analytical chemistry A-pages Abbreviated Journal
Volume 69 Issue Pages 719-727
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19611 Serial 2126
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy Type A1 Journal article
Year 2013 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 85 Issue 2 Pages 670-704
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000313668400013 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 29 Open Access
Notes Approved Most recent IF: 6.32; 2013 IF: 5.825
Call Number UA @ lucian @ c:irua:104719 Serial 190
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy Type A1 Journal article
Year 2008 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 80 Issue 12 Pages 4317-4347
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000256763400006 Publication Date 2008-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 53 Open Access
Notes Approved Most recent IF: 6.32; 2008 IF: 5.712
Call Number UA @ lucian @ c:irua:69437 Serial 191
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy Type A1 Journal article
Year 2006 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 78 Issue 12 Pages 3917-3945
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000238252600007 Publication Date 2006-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 112 Open Access
Notes Approved Most recent IF: 6.32; 2006 IF: 5.646
Call Number UA @ lucian @ c:irua:60058 Serial 192
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy Type A1 Journal article
Year 2004 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 76 Issue 12 Pages 3313-3336
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000222011100006 Publication Date 2004-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 32 Open Access
Notes Approved Most recent IF: 6.32; 2004 IF: 5.450
Call Number UA @ lucian @ c:irua:46258 Serial 193
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy Type A1 Journal article
Year 2002 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 74 Issue 12 Pages 2691-2712
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000176253700006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 18 Open Access
Notes Approved Most recent IF: 6.32; 2002 IF: 5.094
Call Number UA @ lucian @ c:irua:40192 Serial 194
Permanent link to this record
 

 
Author Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C.
Title Atomic spectroscopy: a review Type A1 Journal article
Year 2010 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 82 Issue 12 Pages 4653-4681
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000278616100001 Publication Date 2010-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 65 Open Access
Notes Approved Most recent IF: 6.32; 2010 IF: 5.874
Call Number UA @ lucian @ c:irua:82675 Serial 195
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Garcia, C.C.; Niemax, K.; Bogaerts, A.
Title Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation-inductively coupled plasma mass spectrometry Type A1 Journal article
Year 2009 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 81 Issue 11 Pages 4241-4248
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An optimized laser ablation setup, proposed for high repetition rate inductively coupled plasma mass spectrometry (ICPMS) analyses such as 2D imaging or depth profiling, is presented. For such applications, the particle washout time needs to be as short as possible to allow high laser pulse frequencies for reduced analysis time. Therefore, it is desirable to have an ablation setup that operates as a laminar flow reactor (LFR). A top-down strategy was applied that resulted in the present design. In the first step, a previously applied ablation setup was analyzed on the basis of computational fluid dynamics (CFD) results presented by D. Autrique et al. (Spectrochim. Acta, B 2008, 63, 257−270). By means of CFD simulations, the design was modified in such a way that it operated in the LFR regime. Experimental results demonstrate that the current design can indeed be regarded as an LFR. Furthermore, the operation under LFR conditions allowed some insight into the initial radial concentration distribution if the experimental ICPMS signal and analytical expressions are taken into account. Recommendations for a modified setup for more resilient spatial distributions are given. With the present setup, a washout time of 140 ms has been achieved for a 3% signal area criterion. Therefore, 7 Hz repetition rates can be applied with the present setup. Using elementary formulas of the analytical model, an upper bound for the washout times for similar setups can be predicted. The authors believe that the presented setup geometry comes close to the achievable limit for reliable short washout times.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000266601800014 Publication Date 2009-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 18 Open Access
Notes Approved Most recent IF: 6.32; 2009 IF: 5.214
Call Number UA @ lucian @ c:irua:76935 Serial 2492
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A.
Title Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
Year 2011 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 24 Pages 9260-9266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297946900013 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 34 Open Access
Notes Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:94001 Serial 3009
Permanent link to this record
 

 
Author Martens, T.; Mihailova, D.; van Dijk, J.; Bogaerts, A.
Title Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry Type A1 Journal article
Year 2009 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 81 Issue 21 Pages 9096-9108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have investigated the plasma processes in an atmospheric pressure glow discharge (APGD) in He used for analytical spectrometry by means of fluid and Monte Carlo (MC) simulations. Typical results include the potential and electric field distributions in the plasma, the density profiles of the various plasma species throughout the discharge, the mean electron energy, as well as the rates of the various collision processes in the plasma, and the relative importance of the different production and loss rates for the various species. The similarities and differences with low-pressure glow discharges are discussed. The main differences are a very small cathode dark space region and a large positive column as well as the dominant role of molecular ions. Some characteristic features of the APGD, such as the occurrence of the different spatial zones in the discharge, are illustrated, with links to experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000276191900062 Publication Date 2009-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 15 Open Access
Notes Approved Most recent IF: 6.32; 2009 IF: 5.214
Call Number UA @ lucian @ c:irua:79554 Serial 3604
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Two-dimensional model of a direct current glow discharge : description of the argon metastable atoms, sputtered atoms and ions Type A1 Journal article
Year 1996 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 68 Issue 15 Pages 2676-2685
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional model is presented that describes the behavior of argon metastable atoms, copper atoms, and copper ions in an argon direct. current glow discharge, in the standard cell of the VG9000 glow discharge mass spectrometer for analyzing flat samples. The model is combined with a previously developed model for the electrons, argon ions, and atoms in the same cell to obtain an overall picture of the glow discharge, The results of the present model comprise the number densities of the described plasma species, the relative contributions of different production and loss processes for the argon metastable atoms, the thermalization profile of the sputtered copper atoms, the relative importance of the different ionization mechanisms for the copper atoms, the ionization degree of copper, the copper ion-to-argon ion density ratio, and the relative roles of copper ions, argon ions, and atoms in the sputtering process. All these quantities are calculated for a range of voltages and pressures, Moreover, since the sticking coefficient of copper atoms on solid surfaces is not well-known in the literature, the influence of this parameter on the results is briefly discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1996VA00300042 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.636 Times cited 57 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16242 Serial 3775
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.J.
Title Two-dimensional model of a direct current glow discharge: description of the electrons, argon ions and fast argon atoms Type A1 Journal article
Year 1996 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 68 Issue 14 Pages 2296-2303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1996UY08700002 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.636 Times cited 70 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:16241 Serial 3776
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
Year 2016 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 88 Issue 88 Pages 8005-8018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.
Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381654800020 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 9 Open Access
Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293
Permanent link to this record
 

 
Author Fuchs, J.; Aghaei, M.; Schachel, T.D.; Sperling, M.; Bogaerts, A.; Karst, U.
Title Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS Type A1 Journal article
Year 2018 Publication (down) Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 17 Pages 10271-10278
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique capabilities of microsecond dwell time (DT) single-particle inductively coupled plasma mass spectrometry (spICPMS) were utilized to characterize the cloud of ions generated from the introduction of suspensions of gold nanoparticles (AuNPs) into the plasma. A set of narrowly distributed particles with diameters ranging from 15.4 to 100.1 nm was synthesized and characterized according to established protocols. Statistically significant numbers of the short transient spICPMS events were evaluated by using 50 μs DT for their summed intensity, maximum intensity, and duration, of which all three were found to depend on the particle diameter. The summed intensity increases from 10 to 1661 counts and the maximum intensity from 6 to 309 counts for AuNPs with diameters from 15.4 to 83.2 nm. The event duration rises from 322 to 1007 μs upon increasing AuNP diameter. These numbers represent a comprehensive set of key data points of the ion clouds generated in ICPMS from AuNPs. The extension of event duration is of high interest to appoint the maximum possible particle number concentration at which separation of consecutive events in spICPMS can still be achieved. Moreover, the combined evaluation of all above-mentioned ion cloud characteristics can explain the regularly observed prolonged single-particle events. The transport and ionization behavior of AuNPs in the ICP was also computationally modeled to gain insight into the size-dependent signal generation. The simulated data reveals that the plasma temperature, and therefore the point of ionization of the particles, is the same for all diameters. However, the maximum number density of Au+, as well as the extent of the ion cloud, depends on the particle diameter, in agreement with the experimental data, and it provides an adequate explanation for the observed ion cloud characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444060600028 Publication Date 2018-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 5 Open Access OpenAccess
Notes We thank Dr. Harald Rösner from the Institute of Materials Physics of the University of Münster for the TEM imaging. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:153651 Serial 5057
Permanent link to this record
 

 
Author Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A.
Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
Year 2018 Publication (down) Analytical Chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 22 Pages 13151-13158
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451246100002 Publication Date 2018-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 17 Open Access Not_Open_Access
Notes European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A.
Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
Year 2021 Publication (down) Analytical Chemistry Abbreviated Journal Anal Chem
Volume 93 Issue 17 Pages 6620-6628
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648505900008 Publication Date 2021-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.; van Dijk, J.
Title Computer simulations of a dielectric barrier discharge used for analytical spectrometry Type A1 Journal article
Year 2007 Publication (down) Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem
Volume 388 Issue 8 Pages 1583-1594
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000248373300005 Publication Date 2007-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642;1618-2650; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.431 Times cited 28 Open Access
Notes Approved Most recent IF: 3.431; 2007 IF: 2.867
Call Number UA @ lucian @ c:irua:65036 Serial 466
Permanent link to this record
 

 
Author Bogaerts, A.
Title Modeling plasmas in analytical chemistry—an example of cross-fertilization Type A1 Journal article
Year 2020 Publication (down) Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 412 Issue 24 Pages 6059-6083
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper gives an overview of the modeling work developed in our group in the last 25 years for various plasmas used in analytical spectrochemistry, i.e., glow discharges (GDs), inductively coupled plasmas (ICPs), and laser ablation (LA) for sample introduction in the ICP and for laser-induced breakdown spectroscopy (LIBS). The modeling approaches are briefly presented, which are different for each case, and some characteristic results are illustrated. These plasmas are used not only in analytical chemistry but also in other applications, and the insights obtained in these other fields were quite helpful for us to develop models for the analytical plasmas. Likewise, there is now a huge interest in plasma–liquid interaction, atmospheric pressure glow discharges (APGDs), and dielectric barrier discharges (DBDs) for environmental, medical, and materials applications of plasmas. The insights obtained in these fields are also very relevant for ambient desorption/ionization sources and for liquid sampling, which are nowadays very popular in analytical chemistry, and they could be very helpful in developing models for these sources as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522701700005 Publication Date 2020-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.3 Times cited Open Access
Notes M. Aghaei, Z. Chen, D. Autrique, T. Martens, and P. Heirman are gratefully acknowledged for their valuable efforts in the model developments illustrated in this paper. Approved Most recent IF: 4.3; 2020 IF: 3.431
Call Number PLASMANT @ plasmant @c:irua:168600 Serial 6412
Permanent link to this record
 

 
Author Adams, F.; Adriaens, A.; Bogaerts, A.
Title Can plasma spectrochemistry assist in improving the accuracy of chemical analysis? Type A1 Journal article
Year 2002 Publication (down) Analytica chimica acta Abbreviated Journal Anal Chim Acta
Volume 456 Issue Pages 63-75
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174676000007 Publication Date 2002-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.95 Times cited 6 Open Access
Notes Approved Most recent IF: 4.95; 2002 IF: 2.114
Call Number UA @ lucian @ c:irua:38375 Serial 272
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A.
Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
Year 2010 Publication (down) AIP conference proceedings Abbreviated Journal
Volume 1278 Issue Pages 407-415
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one dimensional particle in cell model. Thermionic emission as well as multi-photon photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target, consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.the word abstract, but do replace the rest of this text. ©2010 American Institute of Physics
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000287183900042 Publication Date 2010-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88899 Serial 3058
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S.
Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
Year 2019 Publication (down) AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472653800069 Publication Date 2019-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume 2075 Series Issue Edition
ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161422 Serial 6281
Permanent link to this record
 

 
Author Meng, S.; Wu, L.; Liu, M.; Cui, Z.; Chen, Q.; Li, S.; Yan, J.; Wang, L.; Wang, X.; Qian, J.; Guo, H.; Niu, J.; Bogaerts, A.; Yi, Y.
Title Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst Type A1 Journal Article
Year 2023 Publication (down) AIChE Journal Abbreviated Journal AIChE Journal
Volume 69 Issue 10 Pages e18154
Keywords A1 Journal Article; chemisorbed oxygen, CO2 hydrogenation, iron-based catalyst, methanol production, plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We report a plasma‐assisted CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH over Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>catalysts, achieving 12% CO<sub>2</sub>conversion and 58% CH<sub>3</sub>OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe‐based catalysts, as well as optimized reaction conditions. We characterized catalysts by X‐ray powder diffraction (XRD), hydrogen temperature programmed reduction (H<sub>2</sub>‐TPR), CO<sub>2</sub>and CO temperature programmed desorption (CO<sub>2</sub>/CO‐TPD), high‐resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x‐ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared<bold>(</bold>FTIR). The XPS results show that the enhanced CO<sub>2</sub>conversion and CH<sub>3</sub>OH selectivity are attributed to the chemisorbed oxygen species on Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO<sub>2</sub>adsorption capacity exhibit a higher reaction performance.<italic>In situ</italic>DRIFTS gain insight into the specific reaction pathways in the CO<sub>2</sub>/H<sub>2</sub>plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001022420000001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes Fundamental Research Funds for the Central Universities, DUT18JC42 ; National Natural Science Foundation of China, 21908016 21978032 ; Approved Most recent IF: 3.7; 2023 IF: 2.836
Call Number PLASMANT @ plasmant @c:irua:197829 Serial 8959
Permanent link to this record
 

 
Author Gijbels, R.; van Straaten, M.; Bogaerts, A.
Title Mass spectrometric analysis of inorganic solids: GDMS and other methods Type A1 Journal article
Year 1995 Publication (down) Advances in mass spectrometry Abbreviated Journal
Volume 13 Issue Pages 241-256
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BG78P00013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0568-000x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12267 Serial 1952
Permanent link to this record
 

 
Author Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemière, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A.
Title Non‐Thermal Plasma as a Unique Delivery System of Short‐Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells Type A1 Journal article
Year 2019 Publication (down) Advanced Science Abbreviated Journal Adv Sci
Volume 6 Issue 6 Pages 1802062
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462613100001 Publication Date 2019-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.034 Times cited 39 Open Access OpenAccess
Notes This study was funded in part by the Flanders Research Foundation (grant no. 12S9218N) and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (LTPAM) grant no. 743151). The microsecond-pulsed power supply was purchased following discussions with the C. & J. Nyheim Plasma Institute at Drexel University. The authors would like to thank Dr. Erik Fransen for his expertise and guidance with the statistical models and analysis used here. The authors would also like to thank Dr. Sander Bekeschus of the Leibniz Institute for Plasma Science and Technology for the discussions at conferences and workshops. A.L. contributed to the design and carrying out of all experiments. A.L. also wrote the manuscript. Y.G. contributed to the design and carrying out of experiments involving chemical measurements. Y.G. also contributed to writing the chemical portions of the manuscript. J.D.B. contributed to the design and carrying out of in vivo experiments. J.D.B. also contributed to writing the portions of the manuscript involving animal experiments and care. J.V.L. contributed to the optimization of the calreticulin protocol used in the experiments. W.V.B. contributed to optimization of colorimetric assays used in the experiments. F.L. contributed to mass spectrometry measurements. P.C., S.D., E.S., and A.B. provided workspace, equipment, and valuable discussions for the project. All authors participated in the review of the manuscript.; Flanders Research Foundation, 12S9218N ; European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Approved Most recent IF: 9.034
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156548 Serial 5165
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication (down) Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record