toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
  Year 2008 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 23 Pages 235433,1-235433,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262245400119 Publication Date 2008-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76006 Serial 3613  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 22 Pages 224301,1-224301,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from an empirical force constant model of valence interactions and calculating by Ewalds method the ion-ion force constants, we derive the dynamical matrix for a monolayer crystal of hexagonal boron nitride (h-BN). The phonon dispersion relations are calculated. The interplay between valence and Coulomb forces is discussed. It is shown by analytical methods that the longitudinal and the transverse optical (LO and TO) phonon branches for in-plane motion are degenerate at the Γ point of the Brillouin zone. Away from Γ, the LO branch exhibits pronounced overbending. It is found that the nonanalytic Coulomb contribution to the dynamical matrix causes a linear increase of the LO branch with increasing wave vector starting at Γ. This effect is general for two-dimensional (2D) ionic crystals. Performing a long-wavelength expansion of the dynamical matrix, we use Borns perturbation method to calculate the elastic constants (tension coefficients). Since the crystal is noncentrosymmetric, internal displacements due to relative shifts between the two sublattices (B and N) contribute to the elastic constants. These internal displacements are responsible for piezoelectric and dielectric phenomena. The piezoelectric stress constant and the dielectric susceptibility of 2D h-BN are calculated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228500045 Publication Date 2009-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 96 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80576 Serial 3616  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Theory of the evolution of phonon spectra and elastic constants from graphene to graphite Type A1 Journal article
  Year 2008 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 8 Pages 085424,1-085424,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)], we use Born's long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the evolution from graphene to graphite by studying the increase in the rigid plane optical mode as a function of the number of layers N. At N=10 the graphite value B2g1127 cm−1 is attained within a few percent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000259406900106 Publication Date 2008-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 72 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76527 Serial 3622  
Permanent link to this record
 

 
Author Werner, R.; Raisch, C.; Leca, V.; Ion, V.; Bals, S.; Van Tendeloo, G.; Chasse, T.; Kleiner, R.; Koelle, D. url  doi
openurl 
  Title Transport, magnetic, and structural properties of La0.7Ce0.3MnO3 thin films: evidence for hole-doping Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 5 Pages 054416,1-054416,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Cerium-doped manganite thin films were grown epitaxially by pulsed laser deposition at 720 °C and oxygen pressure pO2=125 Pa and were subjected to different annealing steps. According to x-ray diffraction (XRD) data, the formation of CeO2 as a secondary phase could be avoided for pO28 Pa. However, transmission electron microscopy shows the presence of CeO2 nanoclusters even in those films which appear to be single phase in XRD. With O2 annealing, the metal-to-insulator transition temperature increases, while the saturation magnetization decreases and stays well below the theoretical value for electron-doped La0.7Ce0.3MnO3 with mixed Mn3+/Mn2+ valences. The same trend is observed with decreasing film thickness from 100 to 20 nm, indicating a higher oxygen content for thinner films. Hall measurements on a film which shows a metal-to-insulator transition clearly reveal holes as dominating charge carriers. Combining data from x-ray photoemission spectroscopy, for determination of the oxygen content, and x-ray absorption spectroscopy (XAS), for determination of the hole concentration and cation valences, we find that with increasing oxygen content the hole concentration increases and Mn valences are shifted from 2+ to 4+. The dominating Mn valences in the films are Mn3+ and Mn4+, and only a small amount of Mn2+ ions can be observed by XAS. Mn2+ and Ce4+ XAS signals obtained in surface-sensitive total electron yield mode are strongly reduced in the bulk-sensitive fluorescence mode, which indicates hole-doping in the bulk for those films which do show a metal-to-insulator transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000263815400057 Publication Date 2009-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:76221 Serial 3725  
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M. url  doi
openurl 
  Title Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 18 Pages 180506,1-180506,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000272310900031 Publication Date 2009-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80314 Serial 3729  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 21 Pages 214509,1-214509,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228200084 Publication Date 2009-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80575 Serial 3743  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages 035409,1-035409,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200107 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75983 Serial 3762  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; Meuris, M.; de Meyer, K.; Heyns, M. url  doi
openurl 
  Title Tunneling-lifetime model for metal-oxide-semiconductor structures Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 8 Pages 085315,1-085315,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper we investigate the basic physics of charge carriers (electrons) leaking out of the inversion layer of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as resulting from two combined processes: (1) the time-dependent decay of electron wave packets representing the inversion-layer charge and (2) the local generation of new electrons replacing those that have leaked away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the gate currents calculated with this model agree very well with experiment, the model also provides an onset to solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that governs the fully coupled metal-oxide-semiconductor system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000269639300076 Publication Date 2009-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78294 Serial 3763  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235440,1-235440,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500147 Publication Date 2009-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 292 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77693 Serial 3904  
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
  Year 2009 Publication (down) Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125331,1-125331,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300098 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79231 Serial 3906  
Permanent link to this record
 

 
Author Vávra, O.; Gaži, S.; Golubović, D.S.; Vávra, I.; Dérer, J.; Verbeeck, J.; Van Tendeloo, G.; Moshchalkov, V.V. doi  openurl
  Title 0 and π phase Josephson coupling through an insulating barrier with magnetic impurities Type A1 Journal article
  Year 2006 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 2 Pages 020502  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the temperature and field dependencies of the critical current I(C) in the Nb-Fe(0.1)Si(0.9)-Nb Josephson junction with a tunneling barrier formed by a paramagnetic insulator. We demonstrate that in these junctions coexistence of both the 0 and the pi states within one tunnel junction occurs, and leads to the appearance of a sharp cusp in the temperature dependence I(C)(T), similar to the I(C)(T) cusp found for the 0-pi transition in metallic pi junctions. This cusp is not related to the 0-pi temperature-induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and pi supercurrents through the barrier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000239426600010 Publication Date 2006-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60087 c:irua:60087 c:irua:60087 c:irua:60087UA @ admin @ c:irua:60087 Serial 1  
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 20 Pages 205306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327161500007 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112704 Serial 18  
Permanent link to this record
 

 
Author Farias, G.A.; da Costa, W.B.; Peeters, F.M. doi  openurl
  Title Acoustical polarons and bipolarons in two dimensions Type A1 Journal article
  Year 1996 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 54 Issue Pages 12835-12840  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VT68200039 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 30 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15790 Serial 54  
Permanent link to this record
 

 
Author García, J.H.; Uchoa, B.; Covaci, L.; Rappoport, T.G. url  doi
openurl 
  Title Adatoms and Anderson localization in graphene Type A1 Journal article
  Year 2014 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 8 Pages 085425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed, leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000341238600004 Publication Date 2014-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; We acknowledge F. Guinea, K. Mullen, A. H. Castro Neto, and E. Mucciolo for discussions. B. U. acknowledges the University of Oklahoma for financial support and NSF Grant No. DMR-1352604 for partial support. T.G.R. and J.H.G acknowledge Brazilian agencies CNPq, FAPERJ, and “INCT de nanoestruturas de carbono” for financial support. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119258 Serial 57  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial 60  
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085423-85429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315146500008 Publication Date 2013-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 281 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107663 Serial 62  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study Type A1 Journal article
  Year 2008 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages 125416,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e., charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254543000133 Publication Date 2008-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1392 Open Access  
  Notes This work was supported by the Flemish Science Foundation FWO-Vl, by the NOI-BOF of the University of Antwerp, and by the Belgian Science Policy IAP. Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69634 Serial 67  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Kálmán, O.; Peeters, F.M.; Benedict, M.G. url  doi
openurl 
  Title Aharonov-Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection Type A1 Journal article
  Year 2007 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 3 Pages 035304,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243895400086 Publication Date 2007-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63751 Serial 86  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B. url  doi
openurl 
  Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 19 Pages 195307-195312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319252200003 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109002 Serial 88  
Permanent link to this record
 

 
Author De Meulenaere, P.; Rodewald, M.; Van Tendeloo, G. url  doi
openurl 
  Title Anisotropic cluster model for the short-range order in Cu1-xPdx-type alloys Type A1 Journal article
  Year 1998 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue 18 Pages 11132-11140  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The split diffuse maxima around the {110} and {100} positions in the diffraction pattern of short-range-ordered Cu1-xPdx alloys (x=0.10...0.60) are attributed to small atomic clusters, being part of the underlying fee lattice. By analyzing the reciprocal space geometry, our cluster method identifies two prominent cluster types: the tetrahedron of nearest neighbors and a linear three-points cluster along the [110] directions. Since both cluster types contain different information on the same nearest-neighbor correlations, local anisotropy has to be assumed. It is shown that the three interatomic pair interactions within these basic clusters are sufficient to generate the spot splitting in the diffraction pattern. A ground-state analysis with these interactions reproduces the results of the anisotropic next-nearest-neighbor Ising model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000073585200026 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:25678 Serial 125  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Adamowski, J. url  doi
openurl 
  Title Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules, parity symmetry, and broken-symmetry states Type A1 Journal article
  Year 2004 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages 125344,1-15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000221259000107 Publication Date 2004-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69384 Serial 129  
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. url  doi
openurl 
  Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 16 Pages 165409-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317195400007 Publication Date 2013-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 365 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108471 Serial 134  
Permanent link to this record
 

 
Author Stefanovich, S.Y.; Belik, A.A.; Azuma, M.; Takano, M.; Baryshnikova, O.V.; Morozov, V.A.; Lazoryak, B.I.; Lebedev, O.I.; Van Tendeloo, G. doi  openurl
  Title Antiferroelectric phase transition in Sr9In(PO4)7 Type A1 Journal article
  Year 2004 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 172103,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225477000003 Publication Date 2004-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Iuap P5/01 Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:54744 Serial 135  
Permanent link to this record
 

 
Author Grujić, M.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Antiferromagnetism in hexagonal graphene structures : rings versus dots Type A1 Journal article
  Year 2013 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085434-85436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Themean-field Hubbard model is used to investigate the formation of the antiferromagnetic phase in hexagonal graphene rings with inner zigzag edges. The outer edge of the ring was taken to be either zigzag or armchair, and we found that both types of structures can have a larger antiferromagnetic interaction as compared with hexagonal dots. This difference could be partially ascribed to the larger number of zigzag edges per unit area in rings than in dots. Furthermore, edge states localized on the inner ring edge are found to hybridize differently than the edge states of dots, which results in important differences in the magnetism of graphene rings and dots. The largest staggered magnetization is found when the outer edge has a zigzag shape. However, narrow rings with armchair outer edge are found to have larger staggered magnetization than zigzag hexagons. The edge defects are shown to have the least effect on magnetization when the outer ring edge is armchair shaped. DOI: 10.1103/PhysRevB.87.085434  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315146600005 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the EuroGRAPHENE programme of the ESF (project CONGRAN), the Serbian Ministry of Education, Science, and Technological Development, and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107661 Serial 137  
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Appearance of enhanced Weiss oscillations in graphene: theory Type A1 Journal article
  Year 2007 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 12 Pages 125429,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000245330200106 Publication Date 2007-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 65 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:64294 Serial 138  
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M. url  doi
openurl 
  Title Application of optical beams to electrons in graphene Type A1 Journal article
  Year 2011 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115458-115458,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288896400013 Publication Date 2011-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89377 Serial 142  
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Artificial molecular quantum rings: spin density functional theory calculations Type A1 Journal article
  Year 2006 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 4 Pages 045313,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000239426800075 Publication Date 2006-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60089 Serial 154  
Permanent link to this record
 

 
Author Smondyrev, M.A.; Devreese, J.T.; Peeters, F.M. doi  openurl
  Title Asymptotic expansions in the path integral approach to the bipolaron problem Type A1 Journal article
  Year 1995 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 51 Issue Pages 15008-15016  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1995RC32900022 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 32 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:11693 Serial 161  
Permanent link to this record
 

 
Author Dobrynin, A.N.; Ievlev, D.N.; Verschoren, G.; Swerts, J.; van Bael, M.J.; Temst, K.; Lievens, P.; Piscopiello, E.; Van Tendeloo, G.; Zhou, S.Q.; Vantomme, A. doi  openurl
  Title Atomic-scale modification of hybrid FePt cluster-assembled films Type A1 Journal article
  Year 2006 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 10 Pages 104421,1-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000236467200069 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:57736 Serial 187  
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
  Year 2012 Publication (down) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165207  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131300008 Publication Date 2012-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101780 Serial 202  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: