toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S. pdf  doi
openurl 
  Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
  Year 2016 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 065203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000368897100008 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:131570 Serial 4179  
Permanent link to this record
 

 
Author Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R.T.; Peeters, F.M.; Zareie, H.M.; Zafer, C. doi  openurl
  Title Controlled growth mechanism of poly (3-hexylthiophene) nanowires Type A1 Journal article
  Year 2016 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 455604  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both pi-pi stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000386132600003 Publication Date 2016-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. HS is supported by a FWO Pegasus-Long Marie Curie Fellowship. HS and RTS acknowledge support from TUBITAK through Project No. 114F397. Also, DA is supported by the Scientific Research Project Fund of Ege University (Project Nr: 12GEE011). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:138159 Serial 4350  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.; doi  openurl
  Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
  Year 2014 Publication (up) Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 3252  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332666700010 Publication Date 2014-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 806 Open Access  
  Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:119247 Serial 2192  
Permanent link to this record
 

 
Author Wu, K.; Torun, E.; Sahin, H.; Chen, B.; Fan, X.; Pant, A.; Wright, D.P.; Aoki, T.; Peeters, F.M.; Soignard, E.; Tongay, S. url  doi
openurl 
  Title Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3 Type A1 Journal article
  Year 2016 Publication (up) Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue Pages 12952  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385444300004 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes ; S.T. acknowledges support from the National Science Foundation (DMR-1552220) and (CMMI-1561839). F.M.P., H.S. and E.T. were supported by the Flemish Science Foundation (FWO-Vl). Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP programme. F.P. acknowledges the funding from Flemish Science Foundation (FWO-Vl). K.W. acknowledges helpful discussions with H. Cai, W. Kong and X. Meng. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. ; Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144662 Serial 4700  
Permanent link to this record
 

 
Author Baskurt, M.; Nair, R.R.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Ultra-thin structures of manganese fluorides : conversion from manganese dichalcogenides by fluorination Type A1 Journal article
  Year 2021 Publication (up) Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 17 Pages 10218-10224  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, it is predicted by density functional theory calculations that graphene-like novel ultra-thin phases of manganese fluoride crystals, that have nonlayered structures in their bulk form, can be stabilized by fluorination of manganese dichalcogenide crystals. First, it is shown that substitution of fluorine atoms with chalcogens in the manganese dichalcogenide host lattice is favorable. Among possible crystal formations, three stable ultra-thin structures of manganese fluoride, 1H-MnF2, 1T-MnF2 and MnF3, are found to be stable by total energy optimization calculations. In addition, phonon calculations and Raman activity analysis reveal that predicted novel single-layers are dynamically stable crystal structures displaying distinctive characteristic peaks in their vibrational spectrum enabling experimental determination of the corresponding phases. Differing from 1H-MnF2 antiferromagnetic (AFM) large gap semiconductor, 1T-MnF2 and MnF3 single-layers are semiconductors with ferromagnetic (FM) ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641719700001 Publication Date 2021-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:178252 Serial 7043  
Permanent link to this record
 

 
Author Sozen, Y.; Yagmurcukardes, M.; Sahin, H. doi  openurl
  Title Vibrational and optical identification of GeO₂ and GeO single layers : a first-principles study Type A1 Journal article
  Year 2021 Publication (up) Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 37 Pages 21307-21315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the present work, the identification of two hexagonal phases of germanium oxides (namely GeO2 and GeO) through the vibrational and optical properties is reported using density functional theory calculations. While structural optimizations show that single-layer GeO2 and GeO crystallize in 1T and buckled phases, phonon band dispersions reveal the dynamical stability of each structure. First-order off-resonant Raman spectral predictions demonstrate that each free-standing single-layer possesses characteristic peaks that are representative for the identification of the germanium oxide phase. On the other hand, electronic band dispersion analysis shows the insulating and large-gap semiconducting nature of single-layer GeO2 and GeO, respectively. Moreover, optical absorption, reflectance, and transmittance spectra obtained by means of G(0)W(0)-BSE calculations reveal the existence of tightly bound excitons in each phase, displaying strong optical absorption. Furthermore, the excitonic gaps are found to be at deep UV and visible portions of the spectrum, for GeO2 and GeO crystals, with energies of 6.24 and 3.10 eV, respectively. In addition, at the prominent excitonic resonances, single-layers display high reflectivity with a zero transmittance, which is another indication of the strong light-matter interaction inside the crystal medium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697364300001 Publication Date 2021-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181571 Serial 7044  
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 31 Pages 16771-16779  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000340075700048 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 58 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118742 Serial 752  
Permanent link to this record
 

 
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M. pdf  doi
openurl 
  Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
  Year 2015 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 13013-13020  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354195300065 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 104 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number c:irua:126394 Serial 2835  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. pdf  url
doi  openurl
  Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
  Year 2015 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27742-27749  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800055 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 83 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129478 Serial 4204  
Permanent link to this record
 

 
Author Duran, T.A.; Šabani, D.; Milošević, M.V.; Sahin, H. doi  openurl
  Title Experimental and theoretical investigation of synthesis and properties of dodecanethiol-functionalized MoS₂ Type A1 Journal article
  Year 2023 Publication (up) Physical chemistry, chemical physics Abbreviated Journal  
  Volume 25 Issue 40 Pages 27141-27150  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, we investigate the DDT (1-dodecanethiol) functionalization of exfoliated MoS2 by using experimental and theoretical tools. For the functionalization of MoS2, DDT treatment was incorporated into the conventional NMP (N-methyl pyrrolidone) exfoliation procedure. Afterward, it has been demonstrated that the functionalization process is successful through optical, morphological and theoretical analysis. The D, G and 2LA peaks seen in the Raman spectrum of exfoliated NMP-MoS2 particles, indicate the formation of graphitic species on MoS2 sheets. In addition, as the DDT ratio increases, the vacant sites on MoS2 sheets diminish. Moreover, at an optimized ratio of DDT-NMP, the maximum number of graphitic quantum dots (GQDs) is observed on MoS2 nanosheets. Specifically, the STEM and AFM data confirm that GQDs reside on the MoS2 nano-sheets and also that the particle size of the DDT-MoS2 is mostly fixed, while the NMP-MoS2 show many smaller and distributed sizes. The comparison of PL intensities of the NMP-MoS2 and DDT-MoS2 samples states a 10-fold increment is visible, and a 60-fold increment in NIR region photoluminescent properties. Moreover, our results lay out understanding and perceptions on the surface and edge chemistry of exfoliated MoS2 and open up more opportunities for MoS2 and GQD particles with broader applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076998800001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200284 Serial 9033  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial 60  
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085423-85429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315146500008 Publication Date 2013-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 281 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107663 Serial 62  
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. url  doi
openurl 
  Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 16 Pages 165409-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317195400007 Publication Date 2013-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 365 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108471 Serial 134  
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 3 Pages 035434-35435  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322083700002 Publication Date 2013-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109807 Serial 1210  
Permanent link to this record
 

 
Author Horzum, S.; Çakir, D.; Suh, J.; Tongay, S.; Huang, Y.-S.; Ho, C.-H.; Wu, J.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Formation and stability of point defects in monolayer rhenium disulfide Type A1 Journal article
  Year 2014 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 15 Pages 155433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, rhenium disulfide (ReS2) monolayers were experimentally extracted by conventional mechanical exfoliation technique from as-grown ReS2 crystals. Unlike the well-known members of transition metal dichalcogenides (TMDs), ReS2 crystallizes in a stable distorted-1T structure and lacks an indirect to direct gap crossover. Here we present an experimental and theoretical study of the formation, energetics, and stability of the most prominent lattice defects in monolayer ReS2. Experimentally, irradiation with 3-MeV He+2 ions was used to break the strong covalent bonds in ReS2 flakes. Photoluminescence measurements showed that the luminescence from monolayers is mostly unchanged after highly energetic a particle irradiation. In order to understand the energetics of possible vacancies in ReS2 we performed systematic first-principles calculations. Our calculations revealed that the formation of a single sulfur vacancy has the lowest formation energy in both Re and S rich conditions and a random distribution of such defects are energetically more preferable. Sulfur point defects do not result in any spin polarization whereas the creation of Re-containing point defects induce magnetization with a net magnetic moment of 1-3 mu B. Experimentally observed easy formation of sulfur vacancies is in good agreement with first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000337301200009 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 130 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the bilateral project FWO-TUBITAK, and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. was supported by a FWO Pegasus Long Marie Curie Fellowship. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118410 Serial 1250  
Permanent link to this record
 

 
Author Bacaksiz, C.; Sahin, H.; Ozaydin, H.D.; Horzum, S.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal A1N : dimensional-crossover-driven band-gap transition Type A1 Journal article
  Year 2015 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 085430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013)], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm(-1) and an E-g mode at 703 cm(-1), which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA'-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N = 1 – 9, we predict that thicker structures (N >= 10) have a direct band gap at the Gamma point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350319200020 Publication Date 2015-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 99 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B. and R.T.S. acknowledge the support from TUBITAK Project No 114F397. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125416 Serial 1421  
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M. url  doi
openurl 
  Title Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 12 Pages 125415-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316383700006 Publication Date 2013-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 171 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108277 Serial 2605  
Permanent link to this record
 

 
Author Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R.T.; Tongay, S.; Peeters, F.M. url  doi
openurl 
  Title Portlandite crystal : bulk, bilayer, and monolayer structures Type A1 Journal article
  Year 2015 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ca(OH)(2) crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)(2) is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)(2) is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)(2) are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)(2) and identified the high-frequency OH stretching mode A(1g) at 3620 cm(-1). In this study, bilayer and monolayer portlandite [Ca(OH)(2)] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356135600007 Publication Date 2015-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126983 Serial 2675  
Permanent link to this record
 

 
Author Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stone-Wales defects in silicene : formation, stability, and reactivity of defect sites Type A1 Journal article
  Year 2013 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 4 Pages 045434-45436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract During the synthesis of ultrathin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphenelike structures results in dramatic changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (similar to 2.4 eV) and Ag(111)-supported (similar to 2.8 eV) silicene and found it to be significantly lower than in graphene (similar to 9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct band gap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW-defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for band gap engineering in silicene-based materials through such defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322113300007 Publication Date 2013-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 93 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109805 Serial 3162  
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Tuning of the electronic and optical properties of single-layer black phosphorus by strain Type A1 Journal article
  Year 2014 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 20 Pages 205421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we showed that the electronic and optical properties of single-layer black phosphorus (BP) depend strongly on the applied strain. Due to the strong anisotropic atomic structure of BP, its electronic conductivity and optical response are sensitive to the magnitude and the orientation of the applied strain. We found that the inclusion of many body effects is essential for the correct description of the electronic properties of monolayer BP; for example, while the electronic gap of strainless BP is found to be 0.90 eV by using semilocal functionals, it becomes 2.31 eV when many-body effects are taken into account within the G(0)W(0) scheme. Applied tensile strain was shown to significantly enhance electron transport along zigzag direction of BP. Furthermore, biaxial strain is able to tune the optical band gap of monolayer BP from 0.38 eV (at -8% strain) to 2.07 eV (at 5.5%). The exciton binding energy is also sensitive to the magnitude of the applied strain. It is found to be 0.40 eV for compressive biaxial strain of -8%, and it becomes 0.83 eV for tensile strain of 4%. Our calculations demonstrate that the optical response of BP can be significantly tuned using strain engineering which appears as a promising way to design novel photovoltaic devices that capture a broad range of solar spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345642000015 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 219 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122203 Serial 3752  
Permanent link to this record
 

 
Author Sahin, H. url  doi
openurl 
  Title Structural and phononic characteristics of nitrogenated holey graphene Type A1 Journal article
  Year 2015 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 085421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experimental studies showed that formation of a two-dimensional crystal structure of nitrogenated holey graphene (NHG) is possible. Similar to graphene, NHGs have an atomically thin and strong crystal structure. Using first-principles calculations, we investigate the structural, phononic, and thermal properties of monolayer NHG crystal. Our charge analysis reveals that the charged holey sites of NHG provide a reactive ground for further functionalization by adatoms or molecules. We also found that similar to graphene, the NHG structure has quite high-frequency phonon modes and the presence of nitrogen atoms leads to the emergence of additional vibrational modes. Our phonon analysis reveals the presence of three characteristic Raman-active modes of NHG. Furthermore, the analysis of constant-volume heat capacity showed that the NHG structure has a linear temperature dependence in the low-temperature region. The strong lattice structure and unique thermal properties of the NHG crystal structure are desirable in nanoscale device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359860700007 Publication Date 2015-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127755 Serial 4252  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Ozaydin, H.D.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title TiS3 nanoribbons : width-independent band gap and strain-tunable electronic properties Type A1 Journal article
  Year 2015 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 075413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties, carrier mobility, and strain response of TiS3 nanoribbons (TiS3 NRs) are investigated by first-principles calculations. We found that the electronic properties of TiS3 NRs strongly depend on the edge type (a or b). All a-TiS3 NRs are metallic with a magnetic ground state, while b-TiS3 NRs are direct band gap semiconductors. Interestingly, the size of the band gap and the band edge position are almost independent of the ribbon width. This feature promises a constant band gap in a b-TiS3 NR with rough edges, where the ribbon width differs in different regions. The maximum carrier mobility of b-TiS3 NRs is calculated by using the deformation potential theory combined with the effective mass approximation and is found to be of the order 10(3) cm(2) V-1 s(-1). The hole mobility of the b-TiS3 NRs is one order of magnitude lower, but it is enhanced compared to the monolayer case due to the reduction in hole effective mass. The band gap and the band edge position of b-TiS3 NRs are quite sensitive to applied strain. In addition we investigate the termination of ribbon edges by hydrogen atoms. Upon edge passivation, the metallic and magnetic features of a-TiS3 NRs remain unchanged, while the band gap of b-TiS3 NRs is increased significantly. The robust metallic and ferromagnetic nature of a-TiS3 NRs is an essential feature for spintronic device applications. The direct, width-independent, and strain-tunable band gap, as well as the high carrier mobility, of b-TiS3 NRs is of potential importance in many fields of nanoelectronics, such as field-effect devices, optoelectronic applications, and strain sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359344100014 Publication Date 2015-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. is supported by a FWO Pegasus-Short Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127760 Serial 4259  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Tuning the magnetic anisotropy in single-layer crystal structures Type A1 Journal article
  Year 2015 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 104407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of an applied electric field and the effect of charging are investigated on themagnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that themagnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuningMAof these compounds. In addition, charging can rotate the easy-axis direction ofCo-on-graphene andOs-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000360961400004 Publication Date 2015-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. C.B. and R.T.S. acknowledge support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127838 Serial 4269  
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
  Year 2016 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371405000005 Publication Date 2016-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132345 Serial 4144  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.; url  doi
openurl 
  Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
  Year 2016 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371398000007 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132352 Serial 4213  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
  Year 2016 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369401000001 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131614 Serial 4220  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
  Year 2016 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 245407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389503400008 Publication Date 2016-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:139229 Serial 4356  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Torun, E.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Mg(OH)2-WS2 van der Waals heterobilayer : electric field tunable band-gap crossover Type A1 Journal article
  Year 2016 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 195403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnesium hydroxide [Mg(OH)(2)] has a layered brucitelike structure in its bulk form and was recently isolated as a new member of two-dimensional monolayer materials. We investigated the electronic and optical properties of monolayer crystals of Mg(OH)(2) and WS2 and their possible heterobilayer structure by means of first-principles calculations. It was found that both monolayers of Mg(OH)(2) and WS2 are direct-gap semiconductors and these two monolayers form a typical van der Waals heterostructure with a weak interlayer interaction and a type-II band alignment with a staggered gap that spatially separates electrons and holes. We also showed that an out-of-plane electric field induces a transition from a staggered to a straddling-type heterojunction. Moreover, by solving the Bethe-Salpeter equation on top of single-shot G(0)W(0) calculations, we show that the low-energy spectrum of the heterobilayer is dominated by the intralyer excitons of the WS2 monolayer. Because of the staggered interfacial gap and the field-tunable energy-band structure, the Mg(OH)(2)-WS2 heterobilayer can become an important candidate for various optoelectronic device applications in nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386769400007 Publication Date 2016-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWOPegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. H.S. acknowledges support from Bilim Akademisi – The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:138205 Serial 4364  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
  Year 2018 Publication (up) Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 11 Pages 115427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427799300006 Publication Date 2018-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: