|   | 
Details
   web
Records
Author Gielis, J.; Brasili, S.
Title Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) Type ME3 Book as editor
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages xi, 175 p.
Keywords ME3 Book as editor; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-833839-0-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201049 Serial 9077
Permanent link to this record
 

 
Author Poppe, R.
Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages iv, 150 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200610 Serial 9084
Permanent link to this record
 

 
Author Vervloessem, E.
Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages 358 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197038 Serial 9088
Permanent link to this record
 

 
Author Peeters, H.
Title Solar active photocatalytic self-cleaning coatings based on plasmon-embedded titania Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages XX, 125 p.
Keywords Doctoral thesis; Engineering sciences. Technology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201390 Serial 9093
Permanent link to this record
 

 
Author Dingenen, F.
Title Solar-driven H2 production from seawater using stabilized plasmon-enhanced photocatalysts Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages XXXVIII, 210 p.
Keywords Doctoral thesis; Engineering sciences. Technology
Abstract As natural gas prices proved to be very volatile, sustainable alternatives are highly needed. Water-derived H2 was revealed as a promising substitute, allowing to produce a green energy carrier with a minimum of harmful emissions. Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues due to the presence of salts.Photocatalytic seawater splitting is particularly promising for this purpose, as it seems less affected by adversary seawater effects and might rely on free and renewable solar power. Unfortunately, the benchmark photocatalyst, TiO2, still suffers from its low solar light activity. It is only actived upon illumination with energetic ultraviolet light (<5% of the sunlight). In order to broaden the activity window to the visible light, the concept of the 'plasmonic rainbow' was explored. Here, TiO2 is modified with various gold-silver composites that possess the unique optical phenomenon of Surface Plasmon Resonance (SPR). This phenomenon enables the absorption of light at very specific wavelengths, depending on the metal type, size, shape and dielectric environment. The light energy might then be converted into hot carriers, strong local electromagnetic fields and/or heat. By combining multiple composites with various sizes and compositions, a broadband absorption could be obtained, resulting in significantly enhanced activity in photocatalytic model reactions under simulated sunlight. The major disadvantage of these plasmonic nanoparticles is their tendency to oxidize and deactivate. To overcome this, polymer shell stabilization strategies were found to be effective to protect the metal cores. Both conductive and non-conductive polymers were studied. For the former, a mix-and-wait strategy generating polyaniline shells of 2-5 nm was used, whille the latter was based on a Layer-by-Layer approach, allowing (sub) nanometer thickness control. For the actual H2 production experiments, the plasmonic loading was optimized in a pure water:methanol scavenger (7:1) mixture and initially the stabilization strategies proofed to be effective for simulated seawater (0.5M NaCl), even after 2 years. However, in real seawater, the activity decreased drastically due to aggregation of the photocatalyst in the presence of multivalent cations. Finally, facile immobilization strategies using 3D printing showed to be able to yield stable, solar active photocatalyst for real seawater splitting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203196 Serial 9094
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Biondo, O.
Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages 221 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197213 Serial 9108
Permanent link to this record
 

 
Author Verbruggen, S.; Van Acker, M.; Furlan, C.; Mercelis, S.; Durt, A.
Title ATLANTES : the mATeriaL spAtial dimeNsion of wasTE flowS: visualising waste streams in the Province of Antwerp Type Minutes and reports
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords Minutes and reports; Economics; Engineering sciences. Technology; Internet Data Lab (IDLab); Research Group for Urban Development; Henry van de Velde
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:199837 Serial 9187
Permanent link to this record
 

 
Author Van Oijstaeijen, W.
Title Green infrastructure and local implementation : (green) bridging the gap between research and practice Type Administrative Services
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages xvii, 194 p.
Keywords Administrative Services; Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Climate change is an ever-increasing threat to our planet, with the urbanisation of previously open spaces exacerbating the issue. The loss of open space leads to a decrease in ecosystem services, which negatively impacts the liveability in urbanised environments, and beyond. The incorporation of green infrastructure (GI) into the built environment is acknowledged as an effective and multi-functional measure to make our living environment resilient and future-proof. Notwithstanding that the local level is essential for effective GI implementation, research into local decision making is very limited. This thesis therefore aims to address two significant gaps in the implementation of GI. The first objective is to bridge the science-policy gap by integrating scientific knowledge on ES and GI into local decision-making processes. In this context, the policy dimension within this thesis involves the process of translating overarching policy objectives into practical actions within local decision-making practices, abstracting from the intricacies of higher-level policymaking itself. The second objective focuses on the people-policy gap, which involves understanding stakeholders' perspectives and priorities regarding GI and its associated ecosystem services. Through stated preference valuation techniques (discrete choice experiments and a best-worst scaling experiment), multi-stakeholder GI perceptions are gathered. Finally, a novel tool to GI valuation is developed, acknowledging the different stakeholder views and building on the insights of collaborative tool development and design. By gaining insights into the demand, prioritisation, and provision of GI from the two most important stakeholder groups at the local level (residents and local decision-makers), this research aims to foster effective communication and alignment between public preferences and policy implementation. Ultimately, addressing these gaps will contribute to more informed planning and decision-making practices related to green infrastructure. The overall goal of this thesis is to enhance the uptake of GI knowledge in the local decision-making context, proposing pathways to facilitate and optimise investments in public GI.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-814-2 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:199925 Serial 9206
Permanent link to this record
 

 
Author Vervoort, P.; Grymonprez, H.; Bouckaert, N.; Derijcke, D.; De Wael, W.
Title Ruimte en gezondheidsongelijkheid aanpakken : een kwestie van sociale rechtvaardigheid Type H2 Book chapter
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages
Keywords H2 Book chapter; Sociology; Law; Centre for Research on Environmental and Social Change
Abstract De bijdrage gaat dieper in op de relatie tussen ruimte en gezondheidsongelijkheid, bespreekt gezondheidsongelijkheid vanuit een rechtenperspectief en illustreert een aantal praktijken waarin de aandacht voor ruimte en gezondheidsongelijkheid samenkomen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-2-509-04324-5 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:200534 Serial 9225
Permanent link to this record
 

 
Author Labey, E.; Fonteyn, F.; Wilmot, A.; El Amouri, S.; Gjurova, A.; De Cock, W.; De Wael, F.
Title Shaping utopia through law: how the law does (not) provide an answer to societal challenges Type ME2 Book as editor or co-editor
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages 210 p.
Keywords ME2 Book as editor or co-editor; Law; Government and Law
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-000-1654-5 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198938 Serial 9227
Permanent link to this record
 

 
Author Li, L.
Title Untangling microbial community assembly in rainforest and grassland soils under increasing precipitation persistence Type Doctoral thesis
Year 2023 Publication (up) Abbreviated Journal
Volume Issue Pages 179 p.
Keywords Doctoral thesis; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate change is causing alterations in precipitation patterns, leading to adverse ecological consequences in many ecosystems. Recently, an increasingly persistent weather pattern has emerged, characterized by lengthening the duration of alternating dry and wet periods, which is more complex than exclusively drought or increasing precipitation. It is currently unclear how soil microbial communities respond to these new regimes in relation to their interactions with plants, especially in precipitation-sensitive ecosystems, such as tropical rainforests and grasslands. In this thesis, we explored responses of soil bacterial and fungal communities to increasing weather persistence in rainforests and grasslands, using high throughput sequencing technology. We firstly investigated the resistance and resilience of microbial communities to prolonged drought in a mature seasonal tropical rainforest which experiences unusually intensive dry seasons in the current century. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to the control. Our results indicate that as rain exclusion progressed, the microbial communities increasingly diverged from the control, indicating a moderate resistance to prolonged drought. However, when the drought ceased, the composition and co-occurrence patterns of soil microbial communities immediately recovered to that in the control, implying a high resilience. To further investigate the ecological roles of soil microbial communities in response to increasing weather persistence, we set up grassland mesocosm experiments. In these experiments, precipitation frequency was adjusted along a series, ranging from 1 to 60 consecutive days alternating of dry and wet periods, while keeping the total precipitation constant. Our results show that microbial community assembly tended to be more stochastic processes at intermediate persistence of dry and wet alternations while more deterministic processes dominated at low and high persistence within 120 days regime exposure. Moreover, more persistent precipitation reduced the fungal diversity and network connectivity but barely impacted that of bacterial communities. The prior experiences of persistent weather events for one year caused legacy effects. The soil microbial legacy induced by soil microbial communities subjected to prior persistent weather events was more enduring in subsequent fungal communities than bacterial communities, likely due to slower growth of fungi compared to bacteria. However, a minor effect of soil microbial legacy  was observed on plant performance. In addition, we kept the grassland mesocosm experiment for two growing seasons. The effects of precipitation persistence on soil microbial communities increased in the second year. The dissimilarities of microbial communities between the first and second year were less with more persistent precipitation, potentially resulting in more vulnerable microbial communities, due to some taxa disappearing and a reduction in functional redundancy under more persistent weather. To conclude, our findings provide a comprehensive theoretical understanding of soil microbial communities in response to the current and future climate change, drawing from both natural and experimental systems. It helps in predicting and managing the impacts of future climate change on ecosystems mediated by microbial communities. Additionally, the findings of microbe-mediated legacy effects on grassland ecosystems can provide practical guidance for their application in agriculture, specifically for using an inoculum to mitigate the impacts of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198498 Serial 9240
Permanent link to this record
 

 
Author Hofer, C.; Mustonen, K.; Skakalova, V.; Pennycook, T.J.
Title Picometer-precision few-tilt ptychotomography of 2D materials Type A1 Journal article
Year 2023 Publication (up) 2D materials Abbreviated Journal
Volume 10 Issue 3 Pages 035029-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract From ripples to defects, edges and grain boundaries, the 3D atomic structure of 2D materials is critical to their properties. However the damage inflicted by conventional 3D analysis precludes its use with fragile 2D materials, particularly for the analysis of local defects. Here we dramatically increase the potential for precise local 3D atomic structure analysis of 2D materials, with both greatly improved dose efficiency and sensitivity to light elements. We demonstrate light atoms can now be located in complex 2D materials with picometer precision at doses 30 times lower than previously possible. Moreover we demonstrate this using WS2, in which the light atoms are practically invisible to conventional methods at low doses. The key advance is combining the concept of few tilt tomography with highly dose efficient ptychography in scanning transmission electron microscopy. We further demonstrate the method experimentally with the even more challenging and newly discovered 2D CuI, leveraging a new extremely high temporal resolution camera.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001013151600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.5; 2023 IF: 6.937
Call Number UA @ admin @ c:irua:197809 Serial 8915
Permanent link to this record
 

 
Author Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzan, L.M.
Title Surfactant layers on gold nanorods Type A1 Journal article
Year 2023 Publication (up) Accounts of chemical research Abbreviated Journal
Volume 56 Issue 10 Pages 1204-1212
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spect r u m based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stabi l i t y of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to t h e formation of NRs with specific morphologies. The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availabi l i t y of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding , but many open questions remain. In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a “Conclusions and Outlook” section, outlining promising future research directions and developments that we consider are sti l l required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986447000001 Publication Date 2023-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 18.3 Times cited 8 Open Access OpenAccess
Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) , from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M. and Grants RYC2019-027842-I , PID2020-117885GA-I00 to J.M.) , and by Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007) , National Center for International Research on Green Optoelectronics (No. 2016B01018) , MOE Interna-tional Laboratory for Optical Information Technologies, and the 111 projects. Approved Most recent IF: 18.3; 2023 IF: 20.268
Call Number UA @ admin @ c:irua:196768 Serial 8940
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B.
Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
Year 2023 Publication (up) ACS applied electronic materials Abbreviated Journal
Volume 5 Issue 11 Pages 5852-5863
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001096792500001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201198 Serial 9026
Permanent link to this record
 

 
Author Yedukondalu, N.; Pandey, T.; Roshan, S.C.R.
Title Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
Year 2023 Publication (up) ACS applied energy materials Abbreviated Journal
Volume 6 Issue 4 Pages 2401-2411
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000929103700001 Publication Date 2023-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195245 Serial 7300
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
Year 2023 Publication (up) ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E.
Title Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
Year 2023 Publication (up) ACS applied materials and interfaces Abbreviated Journal
Volume 15 Issue 5 Pages 7294-7307
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000931729400001 Publication Date 2023-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access Not_Open_Access
Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:195375 Serial 7293
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J.
Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
Year 2023 Publication (up) ACS applied materials and interfaces Abbreviated Journal
Volume 15 Issue 2 Pages 3274-3286
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000912997300001 Publication Date 2023-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access OpenAccess
Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:194317 Serial 7348
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
Year 2023 Publication (up) ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
Volume 1 Issue 6 Pages 1184-1191
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2771-9855 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication (up) ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S.
Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
Year 2023 Publication (up) ACS materials letters Abbreviated Journal
Volume 6 Issue 1 Pages 165-173
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001141178500001 Publication Date 2023-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access Not_Open_Access
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202771 Serial 9053
Permanent link to this record
 

 
Author Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C.
Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 17 Issue 6 Pages 5329-5339
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953440900001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:196097 Serial 7390
Permanent link to this record
 

 
Author Zhang, G.; Huang, S.; Chaves, A.; Yan, H.
Title Black phosphorus as tunable Van der Waals quantum wells with high optical quality Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 17 Issue 6 Pages 6073-6080
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of “forbidden” transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953463300001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:196100 Serial 7565
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Brede, D.A.; Grolimund, D.; Sanchez, D.F.; Nuyts, G.; Cuba, V.; Reinoso-Maset, E.; Salbu, B.; Janssens, K.; Oughton, D.; Scheibener, S.; Teien, H.-C.; Lind, O.C.
Title Synchrotron-based X-ray fluorescence imaging elucidates uranium toxicokinetics in Daphnia magna Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 17 Issue 6 Pages 5296-5305
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract A combination of synchrotron-based elemental anal-ysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed com-parable acute effects (UNP LC50: 402 mu g L-1 [336-484], Uref LC50: 268 mu g L-1 [229-315]). However, the uranium body burden was 3 -to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a similar to 5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960129800001 Publication Date 2023-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:196061 Serial 8631
Permanent link to this record
 

 
Author Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G.
Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 17 Issue 16 Pages 15836-15846
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041649900001 Publication Date 2023-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:198376 Serial 8840
Permanent link to this record
 

 
Author Vega-Paredes, M.; Aymerich-Armengol, R.; Arenas Esteban, D.; Marti-Sanchez, S.; Bals, S.; Scheu, C.; Manjon, A.G.
Title Electrochemical stability of rhodium-platinum core-shell nanoparticles : an identical location scanning transmission electron microscopy study Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 17 Issue 17 Pages 16943-16951
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Rhodium-platinum core-shell nanoparticleson a carbonsupport (Rh@Pt/C NPs) are promising candidates as anode catalystsfor polymer electrolyte membrane fuel cells. However, their electrochemicalstability needs to be further explored for successful applicationin commercial fuel cells. Here we employ identical location scanningtransmission electron microscopy to track the morphological and compositionalchanges of Rh@Pt/C NPs during potential cycling (10 000 cycles,0.06-0.8 V-RHE, 0.5 H2SO4)down to the atomic level, which are then used for understanding thecurrent evolution occurring during the potential cycles. Our resultsreveal a high stability of the Rh@Pt/C system and point toward particledetachment from the carbon support as the main degradation mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001051495900001 Publication Date 2023-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 2 Open Access OpenAccess
Notes The authors would like to thank C. Bodirsky for providing the samples, N. Rivas Rivas for his corrections on the manuscript, and D. Chatain for providing her expertise on the equilibrium shape of nanoparticles. Special thanks to B. Breitbach for performing the XRD experiments. A.G.M. acknowledges the Grant RYC2021-033479- I funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by European Union NextGenerationEU/PRTR. Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:199253 Serial 8859
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J.
Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
Year 2023 Publication (up) ACS nano Abbreviated Journal
Volume 18 Issue 1 Pages 220-228
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001139516800001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
Impact Factor 17.1 Times cited Open Access
Notes Approved Most recent IF: 17.1; 2023 IF: 13.942
Call Number UA @ admin @ c:irua:202811 Serial 9101
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
Year 2023 Publication (up) ACS Omega Abbreviated Journal
Volume 8 Issue 30 Pages 27519-27533
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031269000001 Publication Date 2023-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2023 IF: NA
Call Number UA @ admin @ c:irua:198313 Serial 9011
Permanent link to this record
 

 
Author Mangnus, M.J.J.; de Wit, J.W.; Vonk, S.J.W.; Geuchies, J.J.; Albrecht, W.; Bals, S.; Houtepen, A.J.; Rabouw, F.T.
Title High-throughput characterization of single-quantum-dot emission spectra and spectral diffusion by multiparticle spectroscopy Type A1 Journal article
Year 2023 Publication (up) ACS Photonics Abbreviated Journal
Volume 10 Issue 8 Pages 2688-2698
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In recent years, quantum dots (QDs) have emerged as bright,color-tunablelight sources for various applications such as light-emitting devices,lasing, and bioimaging. One important next step to advance their applicabilityis to reduce particle-to-particle variations of the emission propertiesas well as fluctuations of a single QD's emission spectrum,also known as spectral diffusion (SD). Characterizing SD is typicallyinefficient as it requires time-consuming measurements at the single-particlelevel. Here, however, we demonstrate multiparticle spectroscopy (MPS)as a high-throughput method to acquire statistically relevant informationabout both fluctuations at the single-particle level and variationsat the level of a synthesis batch. In MPS, we simultaneously measureemission spectra of many (20-100) QDs with a high time resolution.We obtain statistics on single-particle emission line broadening fora batch of traditional CdSe-based core-shell QDs and a batchof the less toxic InP-based core-shell QDs. The CdSe-basedQDs show significantly narrower homogeneous line widths, less SD,and less inhomogeneous broadening than the InP-based QDs. The timescales of SD are longer in the InP-based QDs than in the CdSe-basedQDs. Based on the distributions and correlations in single-particleproperties, we discuss the possible origins of line-width broadeningof the two types of QDs. Our experiments pave the way to large-scale,high-throughput characterization of single-QD emission propertiesand will ultimately contribute to facilitating rational design offuture QD structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001009443500001 Publication Date 2023-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited 1 Open Access OpenAccess
Notes This work was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The electron microscopy experiments at EMAT were supported by the European Commission (EUSMI grant E210100474). Approved Most recent IF: 7; 2023 IF: 6.756
Call Number UA @ admin @ c:irua:197337 Serial 8879
Permanent link to this record