|
Record |
Links |
|
Author |
Vega-Paredes, M.; Aymerich-Armengol, R.; Arenas Esteban, D.; Marti-Sanchez, S.; Bals, S.; Scheu, C.; Manjon, A.G. |
|
|
Title |
Electrochemical stability of rhodium-platinum core-shell nanoparticles : an identical location scanning transmission electron microscopy study |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
ACS nano |
Abbreviated Journal |
|
|
|
Volume |
17 |
Issue |
17 |
Pages |
16943-16951 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Rhodium-platinum core-shell nanoparticleson a carbonsupport (Rh@Pt/C NPs) are promising candidates as anode catalystsfor polymer electrolyte membrane fuel cells. However, their electrochemicalstability needs to be further explored for successful applicationin commercial fuel cells. Here we employ identical location scanningtransmission electron microscopy to track the morphological and compositionalchanges of Rh@Pt/C NPs during potential cycling (10 000 cycles,0.06-0.8 V-RHE, 0.5 H2SO4)down to the atomic level, which are then used for understanding thecurrent evolution occurring during the potential cycles. Our resultsreveal a high stability of the Rh@Pt/C system and point toward particledetachment from the carbon support as the main degradation mechanism. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001051495900001 |
Publication Date |
2023-08-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
17.1 |
Times cited |
2 |
Open Access |
OpenAccess |
|
|
Notes |
The authors would like to thank C. Bodirsky for providing the samples, N. Rivas Rivas for his corrections on the manuscript, and D. Chatain for providing her expertise on the equilibrium shape of nanoparticles. Special thanks to B. Breitbach for performing the XRD experiments. A.G.M. acknowledges the Grant RYC2021-033479- I funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by European Union NextGenerationEU/PRTR. |
Approved |
Most recent IF: 17.1; 2023 IF: 13.942 |
|
|
Call Number |
UA @ admin @ c:irua:199253 |
Serial |
8859 |
|
Permanent link to this record |