|   | 
Details
   web
Records
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G.
Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
Year 2011 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages 1262-1267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100039 Publication Date 2011-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 21 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151
Permanent link to this record
 

 
Author de Backer, A.; Van Aert, S.; van Dyck, D.
Title High precision measurements of atom column positions using model-based exit wave reconstruction Type A1 Journal article
Year 2011 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 9/10 Pages 1475-1482
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images. Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the phase of the reconstructed complex exit wave.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461200004 Publication Date 2011-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91879 Serial 1438
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.; Lichte, H.
Title A holographic biprism as a perfect energy filter? Type A1 Journal article
Year 2011 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 7 Pages 887-893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It has often been stated that a holographic biprism represents a near perfect energy filter and only elastically scattered electrons can participate in the interference fringes. This is based on the assumption that the reference wave does not contain inelastically scattered electrons. In this letter we show that this is not exactly true because of the delocalised inelastic interaction of the reference wave with the sample. We experimentally and theoretically show that inelastic scattering plays a role in the fringe formation, but it is shown that this contribution is small and can usually be neglected in practice. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461000021 Publication Date 2011-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:97250UA @ admin @ c:irua:97250 Serial 1482
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; van den Broek, W.
Title A holographic method to measure the source size broadening in STEM Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 120 Issue Pages 35-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an empty Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308082600005 Publication Date 2012-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 246791 COUNTATOMS and ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. W. Van den Broek acknowledges funding from the Condor project, a project under the supervision of the Embedded Systems Institute (ESI) and FEI. This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:100466UA @ admin @ c:irua:100466 Serial 1483
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author Verbeeck, J.; Sc hattschneider, P.; Rosenauer, A.
Title Image simulation of high resolution energy filtered TEM images Type A1 Journal article
Year 2009 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 4 Pages 350-360
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Inelastic image simulation software is presented, implementing the double channeling approximation which takes into account the combination of multiple elastic and single inelastic scattering in a crystal. The approach is described with a density matrix formalism. Two applications in high resolution energy filtered (EFTEM) transmission electron microscopy (TEM) images are presented: thickness-defocus maps for SrTiO3 and exit plane intensities for an (LaAlO3)3(SrTiO3)3 multilayer system. Both systems show a severe breakdown in direct interpretability which becomes worse for higher acceleration voltages, thicker samples and lower excitation edge energies. Since this effect already occurs in the exit plane intensity, it is a fundamental limit and image simulations in EFTEM are indispensable just as they are indispensable for elastic high resolution TEM images.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265345400009 Publication Date 2009-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 36 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77272UA @ admin @ c:irua:77272 Serial 1552
Permanent link to this record
 

 
Author Lobato, I.; van Dyck, D.
Title Improved multislice calculations for including higher-order Laue zones effects Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 119 Issue Pages 63-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A new method for including higher-order Laue zones (HOLZs) effects in an efficient way in electron scattering simulations has been developed and tested by detail calculations. The calculated results by the conventional multislice (CMS) method and the improved conventional multislice (ICMS) method using a large dynamical aperture to avoid numerical errors are compared with accurate results. We have found that the zero-order Laue zones (ZOLZs) reflection cannot be properly described only using the projected potential in the whole unit cell; in general, we need to subslice the electrostatic potential inside the unit cell. It is shown that the ICMS method has higher accuracy than the CMS method for the calculation of the ZOLZ, HOLZ and Pseudo-HOLZ reflections. Hence, ICMS method allows to use a larger slice thickness than the CMS method and reduces the calculation time. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308079200011 Publication Date 2012-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:101902 Serial 1567
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; de Keyzer, R.
Title In situ HREM study of electron irradiation effects in AgCl microcrystals Type A1 Journal article
Year 1992 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 40 Issue Pages 151-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1992HN13400005 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4094 Serial 1581
Permanent link to this record
 

 
Author Potapov, P.L.; Verbeeck, J.; Schattschneider, P.; Lichte, H.; van Dyck, D.
Title Inelastic electron holography as a variant of the Feynman thought experiment Type A1 Journal article
Year 2007 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 107 Issue 8 Pages 559-567
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Using a combination of electron holography and energy filtering, interference fringes produced after inelastic interaction of electrons with hydrogen molecules are examined. Surprisingly, the coherence of inelastic scattering increases when moving from the surface of a hydrogen-containing bubble to the vacuum. This phenomenon can be understood in terms of the Feynman two-slit thought experiment with a variable ambiguity of the which-way registration. (C) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000246937000001 Publication Date 2006-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 13 Open Access
Notes Fwo G.0147.06 Approved Most recent IF: 2.843; 2007 IF: 1.996
Call Number UA @ lucian @ c:irua:103588UA @ admin @ c:irua:103588 Serial 1605
Permanent link to this record
 

 
Author Fanidis, C.; van Dyck, D.; van Landuyt, J.
Title Inelastic scattering of high-energy electrons in a crystal in thermal equilibrium with the environment: 1: theoretical framework Type A1 Journal article
Year 1992 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 41 Issue Pages 55-64
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1992HX68100005 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4092 Serial 1608
Permanent link to this record
 

 
Author Fanidis, C.; van Dyck, D.; van Landuyt, J.
Title Inelastic scattering of high-energy electrons in a crystal in thermal equilibrium with the environment: part 2: solution of the equations and applications to concrete cases Type A1 Journal article
Year 1993 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 48 Issue Pages 133-164
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KM78800013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 6 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6782 Serial 1609
Permanent link to this record
 

 
Author Verbeeck, J.
Title Interpretation of “Energy-filtered electron-diffracted beam holography” by R.A. Herring Type A1 Journal article
Year 2006 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 6 Pages 461-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A straightforward application of the theoretical framework presented by Verbeeck et al. [Ultramicroscopy 102 (2005) 239] is presented to explain the energy-filtered electron-diffracted beam holography experiments published by Herring [Ultramicroscopy 104 (2005) 261]. It is shown that the theory is in agreement with all experimental findings, which leads to the interpretation that the experiments are mainly measuring the angular coherence of the source image rather than exposing details on the coherence properties of inelastic scattering. A change in experimental parameters is proposed, which could result in interesting information about the coherence in all inelastic scattering process. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000237491600002 Publication Date 2006-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:58283UA @ admin @ c:irua:58283 Serial 1710
Permanent link to this record
 

 
Author Dunin-Borkowski, R.E.; Lichte, H.; Tillmann, K.; Van Aert, S.; Van Tendeloo, G.
Title Introduction to a special issue in honour of W. Owen Saxton, David J. Smith and Dirk Van Dyck on the occasion of their 65th birthdays Type Editorial
Year 2013 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 134 Issue Pages 1-1
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication Amsterdam Editor
Language Wos 000324474900001 Publication Date 2013-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access
Notes Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109917 Serial 1721
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.; van den Bos, A.
Title Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures? Type A1 Journal article
Year 2003 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 98 Issue Pages 27-42
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000186831500003 Publication Date 2003-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 26 Open Access
Notes Approved Most recent IF: 2.843; 2003 IF: 1.665
Call Number UA @ lucian @ c:irua:47516 Serial 1749
Permanent link to this record
 

 
Author Schattschneider, P.; Löffler, S.; Stöger-Pollach, M.; Verbeeck, J.
Title Is magnetic chiral dichroism feasible with electron vortices? Type A1 Journal article
Year 2014 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 136 Issue Pages 81-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We discuss the feasibility of detecting magnetic transitions with focused electron vortex probes, suggested by selection rules for the magnetic quantum number. We theoretically estimate the dichroic signal strength in the L2,3 edge of ferromagnetic d metals. It is shown that under realistic conditions, the dichroic signal is undetectable for nanoparticles larger than View the MathML source. This is confirmed by a key experiment with nanometer-sized vortices.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000327884700011 Publication Date 2013-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 64 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:110952UA @ admin @ c:irua:110952 Serial 1750
Permanent link to this record
 

 
Author Van Aert, S.; Chen, J.H.; van Dyck, D.
Title Linear versus non-linear structural information limit in high-resolution transmission electron microscopy Type A1 Journal article
Year 2010 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 11 Pages 1404-1410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has different effects on the transfer of the linear and non-linear terms, such that the non-linear imaging contributions are damped less than the linear imaging contributions at high spatial frequencies. This will be important when coherent aberrations such as spherical aberration and defocus are reduced.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000282562100008 Publication Date 2010-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83689 Serial 1821
Permanent link to this record
 

 
Author den Dekker, A.J.; Van Aert, S.; van den Bos, A.; van Dyck, D.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images: part 1: a theoretical framework Type A1 Journal article
Year 2005 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue 2 Pages 83-106
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400001 Publication Date 2005-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 70 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57229 Serial 1959
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.; Chen, J.H.
Title Maximum likelihood estimation of structure parameters from high resolution electron microscopy images : part 2 : a practical example Type A1 Journal article
Year 2005 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue 2 Pages 107-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230526400002 Publication Date 2005-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 37 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:57131 Serial 1960
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Liu, Y.Z.; Zhang, Z.
Title Measurement of specimen thickness by phase change determination in TEM Type A1 Journal article
Year 2008 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 12 Pages 1616-1622
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract A non-destructive method for measuring the thickness of thin amorphous films composed of light elements has been developed. The method employs the statistics of the phase of the electron exit wave function. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300016 Publication Date 2008-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 2 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:75643 Serial 1961
Permanent link to this record
 

 
Author Potapov, P.L.; Schryvers, D.
Title Measuring the absolute position of EELS ionisation edges in a TEM Type A1 Journal article
Year 2004 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 99 Issue Pages 73-85
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000220804700005 Publication Date 2003-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes Approved Most recent IF: 2.843; 2004 IF: 2.215
Call Number UA @ lucian @ c:irua:48781 Serial 1970
Permanent link to this record
 

 
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D.
Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
Year 2014 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 141 Issue Pages 22-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335766600004 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:117650 Serial 1992
Permanent link to this record
 

 
Author Wang, A.; Chen, F.R.; Van Aert, S.; van Dyck, D.
Title A method to determine the local surface profile from reconstructed exit waves Type A1 Journal article
Year 2011 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages 1352-1359
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Reconstructed exit waves are useful to quantify unknown structure parameters such as the position and composition of the atom columns at atomic scale. Existing techniques provide a complex wave in a flat plane which is close to the plane where the electrons leave the atom columns. However, due to local deviation in the flatness of the exit surface, there will be an offset between the plane of reconstruction and the actual exit of a specific atom column. Using the channelling theory, it has been shown that this defocus offset can in principle be determined atom column-by-atom column. As such, the surface roughness could be quantified at atomic scale. However, the outcome strongly depends on the initial plane of reconstruction especially in a crystalline structure. If this plane is further away from the true exit, the waves of the atom columns become delocalized and interfere mutually which strongly complicates the interpretation of the exit wave in terms of the local structure. In this paper, we will study the delocalization with defocus using the channelling theory in a more systematic way.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100049 Publication Date 2011-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:88941 Serial 2017
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title A model based atomic resolution tomographic algorithm Type A1 Journal article
Year 2009 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 12 Pages 1485-1490
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Tomography with high angular annular dark field scanning transmission electron microscopy at atomic resolution can be greatly improved if one is able to take advantage of prior knowledge. In this paper we present a reconstruction technique that explicitly takes into account the microscope parameters and the atomic nature of the projected object. This results in a more accurate estimate of the atomic positions and in a good resistance to noise. The reconstruction is a maximum likelihood estimator of the object. Moreover, the limits to the precision have been explored, allowing for a prediction of the amount of expected noise in the reconstruction for a certain experimental setup. We believe that the proposed reconstruction technique can be generalized to other tomographic experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000271840200010 Publication Date 2009-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 17 Open Access
Notes Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78588 Serial 2097
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.
Title Model based quantification of EELS spectra Type A1 Journal article
Year 2004 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 101 Issue 2/4 Pages 207-224
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent advances in model based quantification of electron energy loss spectra (EELS) are reported. The maximum likelihood method for the estimation of physical parameters describing an EELS spectrum, the validation of the model used in this estimation procedure, and the computation of the attainable precision, that is, the theoretical lower bound on the variance of these estimates, are discussed. Experimental examples on An and GaAs samples show the power of the maximum likelihood method and show that the theoretical prediction of the attainable precision can be closely approached even for spectra with overlapping edges where conventional EELS quantification fails. To provide end-users with a low threshold alternative to conventional quantification, a user friendly program was developed which is freely available under a GNU public license. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000224046100016 Publication Date 2004-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 147 Open Access
Notes Fwo; Iuap P5/01 Approved Most recent IF: 2.843; 2004 IF: 2.215
Call Number UA @ lucian @ c:irua:57130UA @ admin @ c:irua:57130 Serial 2101
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Bertoni, G.
Title Model-based quantification of EELS spectra: including the fine structure Type A1 Journal article
Year 2006 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 11-12 Pages 976-980
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An extension to model-based electron energy loss spectroscopy (EELS) quantification is reported to improve the possibility of modelling fine structure changes in electron energy loss spectra. An equalisation function is used in the energy loss near edge structure (ELNES) region to model the differences between a single atom differential cross section and the cross section for an atom in a crystal. The equalisation function can be shown to approximate the relative density of unoccupied states for the given excitation edge. On a set of 200 experimental h-BN spectra, this technique leads to statistically acceptable models resulting into unbiased estimates of relative concentrations and making the estimated precisions come very close to the Cramer-Rao lower bound (CRLB). The method greatly expands the useability of model-based EELS quantification to spectra with pronounced fine structure. Another benefit of this model is that one also gets an estimate of the unoccupied density of states for a given excitation edge, without having to do background removal and deconvolution, making the outcome intrinsically more reliable and less noisy. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241592900004 Publication Date 2006-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 38 Open Access
Notes Goa; Fwo Iap-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:61379UA @ admin @ c:irua:61379 Serial 2102
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G.
Title Model-based quantification of EELS spectra: treating the effect of correlated noise Type A1 Journal article
Year 2008 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 2 Pages 74-83
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Correlated noise is generally present in experimentally recorded electron energy loss spectra due to a non-ideal electron detector. In this contribution we describe a method to experimentally measure the noise properties of the detector as well as the consequences it has for model-based quantification using maximum likelihood. The effect of the correlated noise on the maximum likelihood fitting results can be shown to be negligible for the estimated (co)variance of the parameters while an experimentally obtained scaling factor is required to correct the likelihood ratio test for the reduction of noise power with frequency. Both effects are derived theoretically under a set of approximations and tested for a range of signal-to-noise values using numerical experiments. Finally, an experimental example shows that the correction for correlated noise is essential and should always be included in the fitting procedure. (c) 2007 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000252816900002 Publication Date 2007-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 16 Open Access
Notes FWO nr G.0147.06; ESTEEM 026019 Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:67602UA @ admin @ c:irua:67602 Serial 2103
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy Type A1 Journal article
Year 2010 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 5 Pages 548-554
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Depth sectioning in high angular annular dark field scanning transmission electron microscopy is considered a candidate for three-dimensional characterization on the atomic scale. However at present the depth resolution is still far from the atomic level, due to strong limitations in the opening angle of the beam. In this paper we introduce a new, parameter based tomographic reconstruction algorithm that allows to make maximal use of the prior knowledge about the constituent atom types and the microscope settings, so as to retrieve the atomic positions and push the resolution to the atomic level in all three dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279065700022 Publication Date 2009-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:83690 Serial 2104
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Béché, A.
Title A new way of producing electron vortex probes for STEM Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 113 Issue Pages 83-87
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A spiral holographic aperture is used in the condensor plane of a scanning transmission electron microscope to produce a focussed electron vortex probe carrying a topological charge of either −1, 0 or +1. The spiral aperture design has a major advantage over the previously used forked aperture in that the three beams with topological charge m=−1, 0, and 1 are not side by side in the specimen plane, but rather on top of each other, focussed at different heights. This allows us to have only one selected beam in focus on the sample while the others contribute only to a background signal. In this paper we describe the working principle as well as first experimental results demonstrating atomic resolution HAADF STEM images obtained with electron vortex probes. These results pave the way for atomic resolution magnetic information when combined with electron energy loss spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300554400002 Publication Date 2011-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 62 Open Access
Notes J.V. wants to thank Miles Padgett for suggesting this setup and pointing to the relevant optics literature. Peter Schattschneider is acknowledged for in depth discussions on related topics. J.V acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 46791-COUN-TATOMS and ERC Starting Grant no. 278510 VORTEX. The Qu-Ant-EM microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:93624UA @ admin @ c:irua:93624 Serial 2336
Permanent link to this record
 

 
Author Bals, S.; Kilaas, R.; Kisielowski, C.
Title Nonlinear imaging using annular dark field TEM Type A1 Journal article
Year 2005 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 104 Issue 3/4 Pages 281-289
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular dark field TEM images exhibit a dominant mass-thickness contrast that can be quantified to extract single atom scattering cross sections. On top of this incoherent background, additional lattice fringes appear with a nonlinear information limit of 1.2 angstrom at 150 kV. The formation of these fringes is described by coherent nonlinear imaging theory and good agreement is found between experimental and simulated images. Calculations furthermore predict that the use of aberration corrected microscopes will improve the image quality dramatically. (c) 2005 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000231297100012 Publication Date 2005-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 15 Open Access
Notes Approved Most recent IF: 2.843; 2005 IF: 2.490
Call Number UA @ lucian @ c:irua:64685 Serial 2352
Permanent link to this record
 

 
Author De Meulenaere, P.; Van Tendeloo, G.; van Landuyt, J.; van Dyck, D.
Title On the interpretation of HREM images of partially ordered alloys Type A1 Journal article
Year 1995 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 60 Issue 2 Pages 265-282
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The ordering for 11/20 alloys has been studied by high-resolution electron microscopy (HREM). The distribution of the intensity maxima in the HREM image have been statistically examined, which provides a profound basis for the image interpretation. Processing of the HREM images allows ''dark-field'' images to be obtained, exhibiting a two-dimensional distribution of those columns which contain the most information in order to interpret the short-range order correlations. Pair correlations and higher cluster correlations between projected columns can be visualised, providing unique information about the ordering as retrieved from an experimental result without any other assumption. The method has been applied to Au4Cr and to Au4Mn to interpret the quenched short-range order state and the transition to long-range order.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995TZ14700008 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 20 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13014 Serial 2438
Permanent link to this record