toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Verbeeck, J.; Sc hattschneider, P.; Rosenauer, A. pdf  doi
openurl 
  Title Image simulation of high resolution energy filtered TEM images Type A1 Journal article
  Year (down) 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 4 Pages 350-360  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Inelastic image simulation software is presented, implementing the double channeling approximation which takes into account the combination of multiple elastic and single inelastic scattering in a crystal. The approach is described with a density matrix formalism. Two applications in high resolution energy filtered (EFTEM) transmission electron microscopy (TEM) images are presented: thickness-defocus maps for SrTiO3 and exit plane intensities for an (LaAlO3)3(SrTiO3)3 multilayer system. Both systems show a severe breakdown in direct interpretability which becomes worse for higher acceleration voltages, thicker samples and lower excitation edge energies. Since this effect already occurs in the exit plane intensity, it is a fundamental limit and image simulations in EFTEM are indispensable just as they are indispensable for elastic high resolution TEM images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000265345400009 Publication Date 2009-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 36 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:77272UA @ admin @ c:irua:77272 Serial 1552  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: