|   | 
Details
   web
Records
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S.
Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 34 Issue 36 Pages 2110394-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831332200001 Publication Date (up) 2022-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 10 Open Access OpenAccess
Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4
Call Number UA @ admin @ c:irua:189616 Serial 7087
Permanent link to this record
 

 
Author Nicolau, F.; Gielis, J.; Simeone, A.L.; Simoes Lopes, D.
Title Exploring and selecting supershapes in virtual reality with line, quad, and cube shaped widgets Type P1 Proceeding
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 21-28
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Supershapes are used in Parametric Design to model, literally, thou-sands of natural and man-made shapes with a single 6 parameter formula. However, users are left to probe such a rich yet dense collection of supershapes using a set of independent 1-D sliders. Some of the formula’s parameters are non-linear in nature, making them particularly difficult to grasp with conventional 1-D sliders alone. VR appears as a promising setting for Parametric Design with supershapes since it empowers users with more natural visual inspection and shape browsing techniques, with multiple solutions being displayed at once and the possibility to design more interesting forms of slider interaction. In this work, we propose VR shape widgets that allow users to probe and select supershapes from a multitude of solutions. Our designs take leverage on thumbnails, mini-maps, haptic feedback and spatial interaction, while supporting 1-D, 2-D and 3-D supershape parameter spaces. We conducted a user study (N = 18) and found that VR shape widgets are effective, more efficient, and natural than conventional VR 1-D sliders while also usable for users without prior knowledge on supershapes. We also found that the proposed VR widgets provide a quick overview of the main supershapes, and users can easily reach the desired solution without having to perform fine-grain handle manipulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000828657500003 Publication Date (up) 2022-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-6654-9617-9 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188471 Serial 7161
Permanent link to this record
 

 
Author Lin, A.; De Backer, J.; Quatannens, D.; Cuypers, B.; Verswyvel, H.; De La Hoz, E.C.; Ribbens, B.; Siozopoulou, V.; Van Audenaerde, J.; Marcq, E.; Lardon, F.; Laukens, K.; Vanlanduit, S.; Smits, E.; Bogaerts, A.
Title The effect of local non‐thermal plasma therapy on the<scp>cancer‐immunity</scp>cycle in a melanoma mouse model Type University Hospital Antwerp
Year 2022 Publication Bioengineering & Translational Medicine Abbreviated Journal Bioengineering & Transla Med
Volume Issue Pages
Keywords University Hospital Antwerp; A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000784103500001 Publication Date (up) 2022-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-6761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Vlaamse regering, 1S67621N 1S76421N G044420N 12S9221N 12S9218N ; The authors would like to thank and acknowledge Christophe Hermans, Ho Wa Lau, and Hilde Lambrechts for their help with sectioning and preparing the IHC slides. The authors would also like to thank Dani Banner for designing the ergonomic NTP applicator handle and Hasan Baysal for 3D printing the pieces used in this experiment. We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Some of the resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) The data that support the findings of this study are available from the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9218N (Abraham Lin), 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaert, and Steve Vanlanduit), 1S76421N (Delphine Quatannens), and 1S67621N (Hanne Verswyvel). Figure 7 was created with BioRender.com. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:187909 Serial 7056
Permanent link to this record
 

 
Author Hajizadeh, A.; Shahalizade, T.; Riahifar, R.; Yaghmaee, M.S.; Raissi, B.; Gholam, S.; Aghaei, A.; Rahimisheikh, S.; Ghazvini, A.S.
Title Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators : a review Type A1 Journal article
Year 2022 Publication Journal of power sources Abbreviated Journal J Power Sources
Volume 535 Issue Pages 231448-26
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrophoretic Deposition (EPD) is one of the alternative methods to fabricate and enhance the performance of Li-ion batteries. It enables the fabrication of electrodes with outstanding qualities and different electrochemical properties by the great domination over various parameters. EPD facilitates the processing of electrodes by binder-free grafting of nanomaterials, such as graphene derivatives, carbon nanotube, and nanoparticles, into the battery electrodes. It also enables the assembly of the free-standing electrodes with 3D structure and provides possibilities, such as the fabrication of the electrodes with an oriented microstructure, even on 3D substrates to improve the energy or power density. In this review, after an introduction to EPD, the effect of EPD parameters on the properties of the prepared electrodes is reviewed. Then, EPD is compared with tape cast, and its advantages over the conventional method are evaluated. Also, employing the EPD method as an intermediate process is discussed. Finally, the application of EPD in the fabrication of separators is assessed, and the prospects for the future are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000913348500001 Publication Date (up) 2022-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-7753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.2
Call Number UA @ admin @ c:irua:194403 Serial 7303
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K.
Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
Year 2022 Publication Drug testing and analysis Abbreviated Journal
Volume 14 Issue 8 Pages 1471-1481
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000790965700001 Publication Date (up) 2022-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187767 Serial 8921
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date (up) 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 7 Open Access OpenAccess
Notes Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author Wagaarachchige, J.D.; Idris, Z.; Arstad, B.; Kummamuru, N.B.; Sætre, K.A.S.; Halstensen, M.; Jens, K.-J.
Title Low-viscosity nonaqueous sulfolane–amine–methanol solvent blend for reversible CO2 capture Type A1 Journal article
Year 2022 Publication Industrial and engineering chemistry research Abbreviated Journal
Volume 61 Issue 17 Pages 5942-5951
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, the absorption–desorption performance of CO2 in six new solvent blends of amine (diisopropylamine (DPA), 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA), diethanolamine (DEA), diisopropanolamine (DIPA), and ethanolamine (MEA)), sulfolane, and methanol has been monitored using ATR-FTIR spectroscopy. Additionally, NMR-based species confirmation and solvent viscosity analysis were done for DPA solvent samples. The identified CO2 capture products are monomethyl carbonate (MMC), carbamate, carbonate, and bicarbonate anions in different ratios. The DPA solvent formed MMC entirely with 0.88 molCO2/molamine capture capacity, 0.48 molCO2/molamine cyclic capacity, and 3.28 mPa·s CO2-loaded solvent viscosity. MEA, DEA, DIPA, and MDEA were shown to produce a low or a negligible amount of MMC while AMP occupied an intermediate position.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up) 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:199111 Serial 8895
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K.
Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal
Volume 179 Issue Pages 107518-107519
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000809675500010 Publication Date (up) 2022-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188454 Serial 8910
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P.
Title Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
Year 2022 Publication Fuel Abbreviated Journal Fuel
Volume 323 Issue Pages 124269-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000799165400007 Publication Date (up) 2022-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.4
Call Number UA @ admin @ c:irua:187830 Serial 7159
Permanent link to this record
 

 
Author Ding, Y.; Maitra, S.; Arenas Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Van Tendeloo, G.; Liu, J.; Li, Y.; Vlad, A.; Su, B.-L.
Title Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in carbon nitride Type A1 Journal article
Year 2022 Publication Cell reports physical science Abbreviated Journal
Volume 3 Issue 5 Pages 100874-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Artificial photosynthesis of H2O2, an environmentally friendly oxidant and a clean fuel, holds great promise. However, improving its efficiency and stability for industrial implementation remains highly challenging. Here, we report the visible-light H2O2 artificial photosynthesis by digging pro-superoxide radical carbon vacancies in three-dimensional hierarchical porous g-C3N4 through a simple hydrolysis-freeze-drying-thermal treatment. A significant electronic structure change is revealed upon the implantation of carbon vacancies, broadening visible-light absorption and facilitating the photogenerated charge separation. The strong electron affinity of the carbon vacancies promotes superoxide radical (O-center dot(2)-) formation, significantly boosting the H2O2 photocatalytic production. The developed photocatalyst shows an H2O2 evolution rate of 6287.5 mM g(-1) h(-1) under visible-light irradiation with a long cycling stability being the best-performing photocatalyst among all reported g-C3N4-based systems. Our work provides fundamental insight into highly active and stable photocatalysts with great potential for safe industrial H2O2 production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805830100006 Publication Date (up) 2022-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes Y.D. thanks the China Scholarship Council (201808310127) for financial support. This work is financially supported by the National Natural Science Foundation of China (U1663225) , Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education, Program of Introducing Talents of Discipline to Universities-Plan 111 (grant no. B20002) from the Ministry of Science and Technology and the Ministry of Education of China, and the National Key R&D Program of China (2016YFA0202602) . This research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189706 Serial 7090
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A.
Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 5 Pages 055014
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797660000001 Publication Date (up) 2022-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Geerts, J.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Richel, A.; Cornet, I.
Title Evaluation of lignocellulosic wastewater valorization with the oleaginous yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509 Type A1 Journal article
Year 2022 Publication Fermentation Abbreviated Journal
Volume 8 Issue 5 Pages 204-221
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract During the conversion of lignocellulose, phenolic wastewaters are generated. Therefore, researchers have investigated wastewater valorization processes in which these pollutants are converted to chemicals, i.e., lipids. However, wastewaters are lean feedstocks, so these valorization processes in research typically require the addition of large quantities of sugars and sterilization, which increase costs. This paper investigates a repeated batch fermentation strategy with Rhodotorula kratochvilovae EXF7516 and Cutaneotrichosporon oleaginosum ATCC 20509, without these requirements. The pollutant removal and its conversion to microbial oil were evaluated. Because of the presence of non-monomeric substrates, the ligninolytic enzyme activity was also investigated. The repeated batch fermentation strategy was successful, as more lipids accumulated every cycle, up to a total of 5.4 g/L (23% cell dry weight). In addition, the yeasts consumed up to 87% of monomeric substrates, i.e., sugars, aromatics, and organics acids, and up to 23% of non-monomeric substrates, i.e., partially degraded xylan, lignin, cellulose. Interestingly, lipid production was only observed during the harvest phase of each cycle, as the cells experienced stress, possibly due to oxygen limitation. This work presents the first results on the feasibility of valorizing non-sterilized lignocellulosic wastewater with R. kratochvilovae and C. oleaginosum using a cost-effective repeated batch strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000801796000001 Publication Date (up) 2022-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2311-5637 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:187883 Serial 7157
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Vermeyen, V.; Alaerts, L.; Van Acker, K.; Van Passel, S.
Title How to monitor the progress towards a circular food economy : a Delphi study Type A1 Journal article
Year 2022 Publication Sustainable Production and Consumption Abbreviated Journal
Volume 32 Issue Pages 457-467
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Within the food sector, the implementation of a circular economy (CE) can reduce resource consumption and emissions to the environment by moving away from a linear and unsustainable system. This necessitates a clear vision on what circularity for food means, which will provide a much-needed foundation to develop a mon-itoring tool that reveals insights into the progress being made towards a CE, and to expose the bottlenecks and opportunities. This research study contributes to the development of a shared vision for circularity within the food system, and defines and prioritizes a set of indicator themes to monitor a circular food economy (CFE). A two-round Delphi study was performed, including a brainstorming session with experts and the construction of a consensus ranking of indicator themes, considering the production and processing and the consumption stage. The Delphi results provide a shared vision on a CFE, and a blueprint for researchers and policy-makers on its monitoring, which will stimulate the progression from a linear to a circular system.(c) 2022 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000806368300009 Publication Date (up) 2022-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-5509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.1
Call Number UA @ admin @ c:irua:189513 Serial 7360
Permanent link to this record
 

 
Author Bjørnåvold, A.; David, M.; Bohan, D.A.; Gibert, C.; Rousselle, J.-M.; Van Passel, S.
Title Why does France not meet its pesticide reduction targets? Farmers' socio-economic trade-offs when adopting agro-ecological practices Type A1 Journal article
Year 2022 Publication Ecological Economics Abbreviated Journal Ecol Econ
Volume 198 Issue Pages 107440-28
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Despite substantial policy efforts made by the French government to reduce dependence on pesticides, farming practices are only changing slowly. This paper analyses the socio-economic trade-offs that 110 farmers are currently facing in the transition to agro-ecological practices. A mixed-method approach – a quantitative discrete choice experiment (DCE) and qualitative interviews – was set up to understand these farmers' motivations and perspectives, and how policy can improve to accompany them on the road to low chemical input farming. Results of the DCE indicate that the majority of the farmers in our sample are keen to change practices but are at a loss as to how this can be done, as a number of preferences for this transition came out as inconclusive. Qualitative interviews with a representative sample of the farmers that took part in the DCE complemented this result by illustrating a deep uncertainty for the future and a disconnect felt between authorities and themselves as a group. We argue that this uncertainty contributed to a lack of clear-cut solutions established through the DCE. The indepth discussions with farmers illustrated the wish for concrete and local policy measures based on farmers' networks and peer support.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802083900003 Publication Date (up) 2022-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record
Impact Factor 7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7
Call Number UA @ admin @ c:irua:188764 Serial 7375
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date (up) 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Alaerts, L.; Dewulf, J.
Title Retrospective and prospective material flow analysis of the post-consumer plastic packaging waste management system in Flanders Type A1 Journal article
Year 2022 Publication Waste Management Abbreviated Journal Waste Manage
Volume 147 Issue Pages 10-21
Keywords A1 Journal article; Engineering Management (ENM)
Abstract The post-consumer plastic packaging waste management in Flanders was analyzed by performing a retrospective material flow analysis, covering an extensive period from 1985 to 2019. In addition, a prospective material flow analysis of 32 improvement scenarios was performed, based on expected changes in the waste management system. Mass recovery rates were calculated based on different interpretations of the calculation rules. Moreover, various cascading levels were identified to differentiate between the quality level of the secondary applications. The mass recovery rate including only recycling evolved from a value of 0% in 1985 to 31% in 2019 and could be increased to 36-62% depending on the improvement scenario selected. However, the different interpretations of the calculation rules led to a variation of up to 20 and 41% on this mass recovery rates for the retrospective and prospective analysis, respectively. The introduction of monostream recycling for additional post-consumer plastic packaging flows, such as low-density polyethylene, did not lead to increasing mass recovery rates, if no differentiation for the cascading levels was made. The Belgian recycling target of 65% for 2023 will be challenging if the strictest calculation method needs to be followed or if the improvements in the Flemish postconsumer plastic packaging waste system do not follow the best-case collection scenarios under the given assumptions. To harmonize the calculation and monitoring of these targets, clear calculation rules need to be accompanied with a harmonized monitoring system over the entire waste management system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802961100002 Publication Date (up) 2022-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:188651 Serial 7367
Permanent link to this record
 

 
Author Spiller, M.; Moretti, M.; De Paepe, J.; Vlaeminck, S.E.
Title Environmental and economic sustainability of the nitrogen recovery paradigm : evidence from a structured literature review Type A1 Journal article
Year 2022 Publication Resources, conservation and recycling Abbreviated Journal Resour Conserv Recy
Volume 184 Issue Pages 106406-106413
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Our economy drives on reactive nitrogen (Nr); while Nr emissions to the environment surpass the planetary boundary. Increasingly, it is advocated to recover Nr contained in waste streams and to reuse it ‘directly’ in the agri-food chain. Alternatively, Nr in waste streams may be removed as N2 and refixed via the Haber-Bosch process in an ‘indirect’ reuse loop. As a systematic sustainability analysis of ‘direct’ Nr reuse and its comparison to the ‘indirect’ reuse loop is lacking, this structured review aimed to analyze literature determining the environmental and economic sustainability of Nr recovery technologies. Bibliometric records were queried from 2000 to 2020 using Boolean search strings, and manual text coding. In total, 63 studies were selected for the review. Results suggest that ‘direct’ Nr reuse using Nr recovery technologies is the preferred paradigm as the majority of studies concluded that it is sustainable or that it can be sustainable depending on technological assumptions and other scenario variables. Only 17 studies compared the ‘direct’ with the ‘indirect’ Nr reuse route, therefore a system perspective in Nr recovery sustainability assessments should be more widely adopted. Furthermore, Nr reuse should also be analyzed in the context of a ‘new Nr economy’ that relies on decentralized Nr production from renewable energy. It is also recommended that on-par technology readiness level comparisons should be carried out, making use of technology development and technology learning methodologies. Finally, by-products of Nr recovery are important to be accounted for as they are reducing the environmental burdens through avoided impacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804938100001 Publication Date (up) 2022-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.2
Call Number UA @ admin @ c:irua:188873 Serial 7156
Permanent link to this record
 

 
Author Pacquets, L.; Van den Hoek, J.; Arenas Esteban, D.; Ciocarlan, R.-G.; Cool, P.; Baert, K.; Hauffman, T.; Daems, N.; Bals, S.; Breugelmans, T.
Title Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production Type A1 Journal article
Year 2022 Publication ACS applied nano materials Abbreviated Journal
Volume 5 Issue 6 Pages 7723-7732
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000818507900001 Publication Date (up) 2022-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.9 Times cited 3 Open Access OpenAccess
Notes L.P. was supported through a Ph.D. fellowship strategic basic research (1S56920N) of the Research Foundation-Flanders (FWO). S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the Research Council of the University of Antwerp (BOF-GOA 33928). P.C. and R.-G.C. acknowledge financial support by FWO Flanders (project no. G038215N). The authors recognize the contribution of S. Pourbabak and T. Derez for the assistance with the Ag and carbon coating, Indah Prihatiningtyas and Bart Van der Bruggen for the assistance with the contact angle measurements, Daniel Choukroun for the use of the in-house-made hybrid flow cell, and Stijn Van den Broeck for his assistance with the FIB measurements. Approved Most recent IF: 5.9
Call Number UA @ admin @ c:irua:188887 Serial 7099
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Niinemets, Ü.; Schrader, J.; Gielis, J.; Liu, M.; Shi, P.
Title Ellipticalness index : a simple measure of the complexity of oval leaf shape Type A1 Journal article
Year 2022 Publication Pakistan journal of botany : An official publication of pakistan botanical society Abbreviated Journal Pak J Bot
Volume 54 Issue 6 Pages 1-8
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Plants have diverse leaf shapes that have evolved to adapt to the environments they have experienced over their evolutionary history. Leaf shape and leaf size can greatly influence the growth rate, competitive ability, and productivity of plants. However, researchers have long struggled to decide how to properly quantify the complexity of leaf shape. Prior studies recommended the leaf roundness index (RI = 4πA/P2) or dissection index (DI = ), where P is leaf perimeter and A is leaf area. However, these two indices merely measure the extent of the deviation of leaf shape from a circle, which is usually invalid as leaves are seldom circular. In this study, we proposed a simple measure, named the ellipticalness index (EI), for quantifying the complexity of leaf shape based on the hypothesis that the shape of any oval leaf can be regarded as a variation from a standard ellipse. 2220 leaves from nine species of Magnoliaceae were sampled to check the validity of the EI. We also tested the validity of the Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, because the EI actually comes from the proportionality coefficient of the ME. We also compared the ME with five other models of leaf area. The ME was found to be the best model for calculating leaf area based on consideration of the trade-off between model fit vs. complexity, which strongly supported the robustness of the EI for describing oval leaf shape. The new index can account for both leaf shape and size, and we conclude that it is a promising method for quantifying and comparing oval leaf shapes across species in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814279700028 Publication Date (up) 2022-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-3321 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.2
Call Number UA @ admin @ c:irua:188469 Serial 7153
Permanent link to this record
 

 
Author Vishwakarma, M.; Batra, Y.; Hadermann, J.; Singh, A.; Ghosh, A.; Mehta, B.R.
Title Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties Type A1 Journal article
Year 2022 Publication ACS applied energy materials Abbreviated Journal
Volume 5 Issue 6 Pages 7538-7549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hydrogen evolution properties of CZTS heterostructure photocathodes are reported with graphene oxide (GO) as a co-catalyst layer coated by a drop-cast method and an Al2O3 protection layer fabricated using atomic layer deposition. In the CZTS absorber, a minor deviation from stoichiometry across the cross section of the thin film results in nanoscale growth of spurious phases, but the kesterite phase remains the dominant phase. We have investigated the band alignment parameters such as the band gap, work function, and Fermi level position that are crucial for making kesterite-based heterostructure devices. The photocurrent density in the photocathode CZTS/CdS/ZnO is found to be improved to -4.71 mAmiddotcm(-2) at -0.40 V-RHE, which is 3 times that of the pure CZTS. This enhanced photoresponse can be attributed to faster carrier separation at p-n junction regions driven by upward band bending at CZTS grain boundaries and the ZnO layer. GO as a co-catalyst over the heterostructure photocathode significantly improves the photocurrent density to -6.14 mAmiddotcm(-2) at -0.40 V-RHE by effective charge migration in the CZTS/CdS/ZnO/GO configuration, but the onset potential shifts only after application of the Al2O3 protection layer. Significant photocurrents of -29 mAmiddotcm(-2) at -0.40 V-RHE and -8 mAmiddotcm(-2) at 0 V-RHE are observed, with an onset potential of 0.7 V-RHE in CZTS/CdS/ZnO/GO/Al2O3. The heterostructure configuration and the GO co-catalyst reduce the charge-transfer resistance, while the Al2O3 top layer provides a stable photocurrent for a prolonged time (similar to 16 h). The GO co-catalyst increases the flat band potential from 0.26 to 0.46 V-RHE in CZTS/CdS/ZnO/GO, which supports the bias-induced band bending at the electrolyte-electrode interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820418400001 Publication Date (up) 2022-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4
Call Number UA @ admin @ c:irua:189666 Serial 7082
Permanent link to this record
 

 
Author Chen, J.; Ying, J.; Xiao, Y.; Dong, Y.; Ozoemena, K., I; Lenaerts, S.; Yang, X.
Title Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation Type A1 Journal article
Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater
Volume 65 Issue 10 Pages 2685-2693
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical CoxNiyFezP with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (eta = 320 mV at 10 mA cm(-2)) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm(-2)) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by 0 under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/ Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805530000001 Publication Date (up) 2022-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-8226; 2199-4501 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:189074 Serial 7212
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.
Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci
Volume 1514 Issue 1 Pages 34-42
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000803394100001 Publication Date (up) 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number UA @ admin @ c:irua:188470 Serial 7139
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M.
Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 446 Issue 5 Pages 137323-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000833418100006 Publication Date (up) 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1
Call Number UA @ admin @ c:irua:189283 Serial 7167
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K.
Title Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
Year 2022 Publication Sensors & Diagnostics Abbreviated Journal
Volume 1 Issue 1 Pages 793-802
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date (up) 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188521 Serial 8856
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J.
Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 235 Issue Pages 118088-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814729300005 Publication Date (up) 2022-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:188505 Serial 7096
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A.
Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 6 Pages 2718-2728
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000819431200001 Publication Date (up) 2022-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189555 Serial 7081
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K.
Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type A1 Journal article
Year 2022 Publication Science Advances Abbreviated Journal
Volume 8 Issue 23 Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000811556500011 Publication Date (up) 2022-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:189657 Serial 7205
Permanent link to this record
 

 
Author Van Oijstaeijen, W.; Van Passel, S.; Back, P.; Cools, J.
Title The politics of green infrastructure : a discrete choice experiment with Flemish local decision-makers Type Administrative Services
Year 2022 Publication Ecological Economics Abbreviated Journal Ecol Econ
Volume 199 Issue Pages 107493-18
Keywords Administrative Services; A1 Journal article; Economics; Engineering Management (ENM)
Abstract Being confronted with increasing and expanding urbanisation and the loss of natural green spaces, our living environment is threatened more and more by the effects of global climate change. Green infrastructure is often thought of as the solution to increase climate resilience and reinforce the quality of the lived environment simultaneously. While the benefits, or ecosystem services, that are generated through green infrastructure have been studied intensively, forces that influence green infrastructure decision-making have been far less subjected to thorough research. In this study a discrete choice experiment was conducted with local decision makers in Flemish municipalities to reveal crucial factors in the decision process applied to green infrastructure projects. Flanders is one of the most densely built regions in Europe, stressing the urgency to understand local spatial decision factors to guarantee green space. 568 decision makers active in the local administration of 235 Flemish municipalities participated in the experiment, set in a hypothetical neighbourhood park. Every choice alternative exists of five attributes: investment cost, maintenance cost, deferred investment, recreational value, and climate impact. We find that barriers hampering Flemish munipalities' GI implementation, differ over size of the municipality: smallers municipalities are more affected by knowledge gaps, while larger municipalities are experiencing prioritization issues. Results from hierarchical Bayes choice models indicate that municipal decisions on green infrastructure are highly – almost solely -cost-driven, rarely consider the full range of benefits, and centre around short-term and immediate arguments. Moreover, interaction models reveal that a municipalities' financial result is a key determinant of its willingness to invest in public greening and consider long term benefits, suggesting that GI is a luxury good. The results expose some of the heuristics in GI decision making and can be used to inform higher authorities on ways to overcome barriers towards informed decision-making and to facilitate GI investment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000811715200008 Publication Date (up) 2022-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7
Call Number UA @ admin @ c:irua:189018 Serial 7371
Permanent link to this record
 

 
Author Sun, C.; Street, M.; Zhang, C.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.
Title Boron structure evolution in magnetic Cr₂O₃ thin films Type A1 Journal article
Year 2022 Publication Materials Today Physics Abbreviated Journal
Volume 27 Issue Pages 100753-100757
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract B substituting O in antiferromagnetic Cr2O3 is known to increase the Ne ' el temperature, whereas the actual B dopant site and the corresponding functionality remains unclear due to the complicated local structure. Herein, A combination of electron energy loss spectroscopy and first-principles calculations were used to unveil B local structures in B doped Cr2O3 thin films. B was found to form either magnetic active BCr4 tetrahedra or various inactive BO3 triangles in the Cr2O3 lattice, with a* and z* bonds exhibiting unique spectral features. Identification of BO3 triangles was achieved by changing the electron momentum transfer to manipulate the differential cross section for the 1s-z* and 1s-a* transitions. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental z* / a* ratios for 15-42% of the B occupying the active BCr4 structure. This result is further supported by first-principles based thermodynamic calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000827323200003 Publication Date (up) 2022-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record
Impact Factor 11.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.5
Call Number UA @ admin @ c:irua:189660 Serial 7078
Permanent link to this record
 

 
Author Spacova, I.; Ahannach, S.; Breynaert, A.; Erreygers, I.; Wittouck, S.; Bron, P.A.; Van Beeck, W.; Eilers, T.; Alloul, A.; Blansaer, N.; Vlaeminck, S.E.; Hermans, N.; Lebeer, S.
Title Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods Type A1 Journal article
Year 2022 Publication Frontiers in Nutrition Abbreviated Journal
Volume 9 Issue Pages 916607-916619
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Riboflavin-producing lactic acid bacteria represent a promising and cost-effective strategy for food biofortification, but production levels are typically insufficient to support daily human requirements. In this study, we describe the novel human isolate Limosilactobacillus reuteri AMBV339 as a strong food biofortification candidate. This strain shows a high natural riboflavin (vitamin B2) overproduction of 18.36 mu g/ml, biomass production up to 6 x 10(10) colony-forming units/ml (in the typical range of model lactobacilli), and pH-lowering capacities to a pH as low as 4.03 in common plant-based (coconut, soy, and oat) and cow milk beverages when cultured up to 72 h at 37 degrees C. These properties were especially pronounced in coconut beverage and butter milk fermentations, and were sustained in co-culture with the model starter Streptococcus thermophilus. Furthermore, L. reuteri AMBV339 grown in laboratory media or in a coconut beverage survived in gastric juice and in a simulated gastrointestinal dialysis model with colon phase (GIDM-colon system) inoculated with fecal material from a healthy volunteer. Passive transport of L. reuteri AMBV339-produced riboflavin occurred in the small intestinal and colon stage of the GIDM system, and active transport via intestinal epithelial Caco-2 monolayers was also demonstrated. L. reuteri AMBV339 did not cause fecal microbiome perturbations in the GIDM-colon system and inhibited enteric bacterial pathogens in vitro. Taken together, our data suggests that L. reuteri AMBV339 represents a promising candidate to provide riboflavin fortification of plant-based and dairy foods, and has a high application potential in the human gastrointestinal tract.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814856600001 Publication Date (up) 2022-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-861x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:189011 Serial 7211
Permanent link to this record