|   | 
Details
   web
Records
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M.
Title Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages 205441-205441,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400011 Publication Date (up) 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 78 Open Access
Notes ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94025 Serial 997
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Landau levels in asymmetric graphene trilayer Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages 205448-205448,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic spectrum of three coupled graphene layers (graphene trilayers) is investigated in the presence of an external magnetic field. We obtain analytical expressions for the Landau level spectrum for both the ABA and ABC type of stacking, which exhibit very different dependence on the magnetic field. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400018 Publication Date (up) 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and the CNPq and FWO-Vl. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94026 Serial 1773
Permanent link to this record
 

 
Author Bertrand, L.; Robinet, L.; Thoury, M.; Janssens, K.; Cohen, S.X.; Schöder, S.
Title Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging Type A1 Journal article
Year 2012 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 106 Issue 2 Pages 377-396
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of synchrotron radiation techniques to study cultural heritage and archaeological materials has undergone a steep increase over the past 10-15 years. The range of materials studied is very broad and encompasses painting materials, stone, glass, ceramics, metals, cellulosic and wooden materials, and a cluster of organic-based materials, in phase with the diversity observed at archaeological sites, museums, historical buildings, etc. Main areas of investigation are: (1) the study of the alteration and corrosion processes, for which the unique non-destructive speciation capabilities of X-ray absorption have proved very beneficial, (2) the understanding of the technologies and identification of the raw materials used to produce archaeological artefacts and art objects and, to a lesser extent, (3) the investigation of current or novel stabilisation, conservation and restoration practices. In terms of the synchrotron methods used, the main focus so far has been on X-ray techniques, primarily X-ray fluorescence, absorption and diffraction, and Fourier-transform infrared spectroscopy. We review here the use of these techniques from recent works published in the field demonstrating the breadth of applications and future potential offered by third generation synchrotron techniques. New developments in imaging and advanced spectroscopy, included in the UV/visible and IR ranges, could even broaden the variety of materials studied, in particular by fostering more studies on organic and complex organic-inorganic mixtures, while new support activities at synchrotron facilities might facilitate transfer of knowledge between synchrotron specialists and users from archaeology and cultural heritage sciences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299749000009 Publication Date (up) 2011-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 55 Open Access
Notes ; The authors acknowledge the critical reading by B. Berrie (National Gallery of Art, Washington DC, USA). We thank J. Mass (Conservation Department, Winterthur Museum and Country Estate, Winterthur, DE, USA), H. Roemich (Institute of Fine Arts, New York University, USA), J. Hiller (Non-Crystalline Diffraction Beamline, Diamond Light Source, Didcot, UK) and J.-P. Echard (Laboratoire de recherche et de restauration, Musee de la musique, Paris, France) for their comments on the presentation of their work in the manuscript. The IPANEMA platform is jointly developed by CNRS, MNHN, the French Ministry of Culture and Communication and SOLEIL, and benefits from a CPER grant (MESR, Region Ile-de-France). Support by the Access to Research Infrastructures activity in the 7th Framework Programme of the EU (CHARISMA Grant Agreement n. 228330) and the NWO Science4Arts programme are acknowledged. ; Approved Most recent IF: 1.455; 2012 IF: 1.545
Call Number UA @ admin @ c:irua:99166 Serial 5561
Permanent link to this record
 

 
Author Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G.
Title Measuring the corrugation amplitude of suspended and supported graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 23 Pages 235417-235417,5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanoscale corrugation is a fundamental property of graphene arising from its low-dimensional nature. It places a fundamental limit to the conductivity of graphene and influences its properties. However the degree of the influence of the corrugation has not been well established because of the little knowledge about its spectrum in suspended graphene. We present a transmission electron microscopy technique that enables us to measure the average corrugation height and length. We applied the technique also to measure the temperature dependence of the corrugation. The difference in corrugation between suspended and supported graphene has been illustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297764700003 Publication Date (up) 2011-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93629 Serial 1971
Permanent link to this record
 

 
Author Piñera, I.; Cruz, C.M.; van Espen, P.; Abreu, Y.; Leyva, A.
Title Study of dpa distributions in electron irradiated YBCO slabs through MCCM algorithm Type A1 Journal article
Year 2012 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal
Volume 274 Issue Pages 191-194
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The Monte Carlo assisted Classical Method (MCCM) consists on a calculation procedure for determining the displacements per atom (dpa) distribution in solid materials. This algorithm allows studying the gamma and electron irradiation damage in different materials. It is based on the electrons elastic scattering classic theories and the use of Monte Carlo simulation for the physical processes involved. The present study deals with the Monte Carlo simulation of electron irradiation effects on YBa2Cu3O7-x (YBCO) slabs using the MCNPX code system. Displacements per atom distributions are obtained through the MCCM for electron irradiation up to 10 MeV. In-depth dpa profiles for electrons and positrons are obtained and analysed. Also, dpa contributions from each atomic specie in the material are calculated. It was found that the dpa distribution is more homogeneous in the material volume when increasing energy of incident electrons. Also, the dpa produced by positrons has no relevance when irradiating with electrons, in contrast with previous similar gamma irradiation studies. All the results are presented and discussed in this contribution. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301611900031 Publication Date (up) 2011-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:97819 Serial 8595
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.
Title Superconducting proximity effect in graphene under inhomogeneous strain Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 241401-241401,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubovde Gennes method to computations on video cards (GPUs).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297766600003 Publication Date (up) 2011-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Euro GRAPHENE project CONGRAN. Discussions with Andrey Chaves are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93962 Serial 3364
Permanent link to this record
 

 
Author Stankovski, M.; Antonius, G.; Waroquiers, D.; Miglio, A.; Dixit, H.; Sankaran, K.; Giantomassi, M.; Gonze, X.; Côté, M.; Rignanese, G.-M.
Title G0W0 band gap of ZnO : effects of plasmon-pole models Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 241201-241201,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Carefully converged calculations are performed for the band gap of ZnO within many-body perturbation theory (G0W0 approximation). The results obtained using four different well-established plasmon-pole models are compared with those of explicit calculations without such models (the contour-deformation approach). This comparison shows that, surprisingly, plasmon-pole models depending on the f-sum rule gives less precise results. In particular, it confirms that the band gap of ZnO is underestimated in the G0W0 approach as compared to experiment, contrary to the recent claim of Shih et al. [ Phys. Rev. Lett. 105 146401 (2010)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297766600001 Publication Date (up) 2011-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 81 Open Access
Notes ; The authors would like to thank P. Zhang, S. Louie, J. Deslippe, P. Rinke, H. Jiang, C. Friedrich, and F. Bruneval for many helpful discussions. We are also very grateful to Y. Pouillon, A. Jacques, and J.-M. Beuken for their technical aid and expertise. M.C. and G.A. would like to acknowledge the support of NSERC and FQRNT. This work was supported by the Interuniversity Attraction Poles program (P6/42)-Belgian State-Belgian Science Policy, the Flemish Science Foundation (FWO-Vl) ISIMADE project, the EU's 7th Framework programme through the ETSF I3 e-Infrastructure project (Grant Agreement No. 211956), the Communaute francaise de Belgique, through the Action de Recherche Concertee 07/ 12-003 “Nanosystemes hybrides metal-organiques”, and the FNRS through FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93963 Serial 3533
Permanent link to this record
 

 
Author Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Energy levels of triangular and hexagonal graphene quantum dots : a comparative study between the tight-binding and Dirac equation approach Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 245403-245403,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dirac equation is solved for triangular and hexagonal graphene quantum dots for different boundary conditions in the presence of a perpendicular magnetic field. We analyze the influence of the dot size and its geometry on their energy spectrum. A comparison between the results obtained for graphene dots with zigzag and armchair edges, as well as for infinite-mass boundary condition, is presented and our results show that the type of graphene dot edge and the choice of the appropriate boundary conditions have a very important influence on the energy spectrum. The single-particle energy levels are calculated as a function of an external perpendicular magnetic field that lifts degeneracies. Comparing the energy spectra obtained from the tight-binding approximation to those obtained from the continuum Dirac equation approach, we verify that the behavior of the energies as a function of the dot size or the applied magnetic field are qualitatively similar, but in some cases quantitative differences can exist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297767800008 Publication Date (up) 2011-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 145 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE (project CONGRAN), the Bilateral program between Flanders and Brazil, CAPES and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93961 Serial 1040
Permanent link to this record
 

 
Author Berger, J.; Milošević, M.V.
Title Fluctuations in superconducting rings with two order parameters Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214515-214515,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-Landau energy functional, we discuss how the presence of two order parameters and the coupling between them influence a superconducting ring in the fluctuative regime. Our method is an extension of the von OppenRiedel formalism for rings; it is exact, but requires numerical implementation. We also study approximations for which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current only for appropriate parameters. In cases of very different material parameters for the two coupled condensates, the persistent current is inhibited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297932500004 Publication Date (up) 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This research was supported by the Israel Science Foundation, Grant No. 249/10, the Flemish Science Foundation (FWO-Vl), and the ESF network INSTANS. We are grateful to Andrei Varlamov and Felix von Oppen for their answers to our enquiries. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93957 Serial 1226
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M.
Title Scattering of Dirac electrons by circular mass barriers : valley filter and resonant scattering Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 245413-245413,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used to obtain parallel and perpendicular resistivity components within linear transport theory. We found a nonzero perpendicular resistivity component which has opposite sign for electrons in the different K and K′ valleys. This property can be used for valley filter purposes. The total cross section for scattering on penetrable barriers exhibits resonances due to the presence of quasibound states in the barriers that show up as sharp gaps in the cross section while for Schrödinger electrons they appear as peaks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297934500008 Publication Date (up) 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94383 Serial 2951
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date (up) 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Bouvier, S.; Benmhenni, N.; Tirry, W.; Gregory, F.; Nixon, M.E.; Cazacu, O.; Rabet, L.
Title Hardening in relation with microstructure evolution of high purity \alpha-titanium deformed under monotonic and cyclic simple shear loadings at room temperature Type A1 Journal article
Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 535 Issue Pages 12-21
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The aim of this paper is to gain understanding of the quasi-static, large strain deformation behavior at room-temperature of high-purity alpha-Ti with an initial split-basal texture. Simple shear tests were conducted along different directions in order to quantify the material's anisotropy and hardening evolution for different strain paths such as monotonic, Bauschinger, and cyclic loadings. The stress-strain curves indicate that the material displays strong anisotropy in the flow behavior. In order to capture the link between microstructure evolution (occurrence of twinning, grain size evolution, etc.) and the macroscopic response, a thoroughly detailed multi-scale characterization using scanning electron microscope (SEM) observations and electron backscattered diffraction (EBSD) analysis was also conducted. Specifically, EBSD analyses indicate that the twin activity and grain fragmentation are responsible for the observed difference between the macroscopic hardening rates corresponding to different directions and loading paths. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000301402400003 Publication Date (up) 2011-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 22 Open Access
Notes Approved Most recent IF: 3.094; 2012 IF: 2.108
Call Number UA @ lucian @ c:irua:97824 Serial 1410
Permanent link to this record
 

 
Author Coghe, F.; Tirry, W.; Rabet, L.; Schryvers, D.; Van Houtte, P.
Title Importance of twinning in static and dynamic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure Type A1 Journal article
Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 537 Issue Pages 1-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Whereas deformation twinning is known to be an important deformation mechanism for hexagonal materials like magnesium and pure titanium, so far almost no literature exists on the twinning behaviour of the Ti-6Al-4V alloy. In this work it was shown that the activation of twinning as a deformation mechanism could have a pronounced effect on the mechanical behaviour of the Ti-6Al-4V alloy. This effect is even more pronounced under dynamic loading conditions. Transmission electron microscopy showed that only the {1 0 1 2}{1 0 1 1} tensile twin system was activated under certain loading conditions. Light-optical microscopy and electron backscatter diffraction data were afterwards used to experimentally determine the twin fractions. The importance of twinning for the texture evolution was also studied. It was shown that even small twin fractions can lead to distinct texture features, especially due to the discrete reorientation of the c-axes. The experimental results were compared to simulated results that were obtained with a viscoplastic self-consistent crystal plasticity code, after experimental validation that twinning can be reliably modelled as a unidirectional slip system. Although good agreement was obtained for the experimental and simulated stress-strain curves, the simulated results concerning twinning correlated well only on a qualitative basis as the simulated twin fractions were systematically higher than the experimental fractions. This seems to strengthen the hypothesis made by other research groups that complete grains might reorient by twinning. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000301473300001 Publication Date (up) 2011-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 35 Open Access
Notes Approved Most recent IF: 3.094; 2012 IF: 2.108
Call Number UA @ lucian @ c:irua:97818 Serial 1565
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H.
Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 3 Pages 2322-2329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000299584400037 Publication Date (up) 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 104 Open Access
Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:96225 Serial 2316
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H.
Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 4 Pages 523-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000299156400011 Publication Date (up) 2011-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 150 Open Access
Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:94110 Serial 717
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
Title Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 23 Pages 235319-235319,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory. We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the electron Fermi energy in contrast to predictions from one-dimensional models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298605700002 Publication Date (up) 2011-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund, Project No. N N202103938 supported by the Ministry of Science and Higher Education (MNiSW) for 2010-2013, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94292 Serial 1171
Permanent link to this record
 

 
Author de Oliveira, E.L.; Albuquerque, E.L.; de Sousa, J.S.; Farias, G.A.; Peeters, F.M.
Title Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 7 Pages 4399-4407
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals (NC's) with diameters of similar to 1.9 nm are investigated using a combination density functional ab initio method to obtain the single particle wave functions and a configuration interaction method to compute the exciton fine structure and absorption coefficient. These core/shell structures exhibit type II confinement, which is more pronounced for the Si/Ge NC as a consequence of strain. The absorption coefficients of these NC's exhibit a single dominant peak, which has a much larger oscillator strength than the multipeaks found for pure Si and Ge NC's. The exciton lifetime in Si, Ge, and Ge/Si shows a small i:emperature dependence in the range 10-300 K, whereas in Si/Ge, the exciton lifetime decreases more than an order of magnitude in the same temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301156500007 Publication Date (up) 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 44 Open Access
Notes ; The authors acknowledge financial support from CNPq and the bilateral program between Flanders and Brazil and the Belgian Science Foundation (IAP). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:113045 Serial 482
Permanent link to this record
 

 
Author Rønnow, T.F.; Pedersen, T.G.; Partoens, B.
Title Biexciton binding energy in fractional dimensional semiconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 4 Pages 045412-045412,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Biexcitons in fractional dimensional spaces are studied using variational quantum Monte Carlo. We investigate the biexciton binding energy as a function of the electron-hole mass fraction sigma as well as study the dimensional dependence of biexcitons for sigma = 0 and sigma = 1. As our first application of this model we treat the H(2) molecule in two and three dimensions. Next we investigate biexcitons in carbon nanotubes within the fractional dimensional model. To this end we find a relation between the nanotube radius and the effective dimension. The results of both applications are compared with results obtained using different models and we find a reasonable agreement. Within the fractional dimensional model we find that the biexciton binding energy in carbon nanotubes accurately scales as E(B)(r,epsilon) = 1280 meV angstrom/(r epsilon), as a function of radius r and the dielectric screening epsilon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298922200008 Publication Date (up) 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96234 Serial 231
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Enhancement of the retrapping current of superconducting microbridges of finite length Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 2 Pages 024508-024508,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically find that the resistance of a superconducting microbridge or nanowire decreases while the retrapping current I(r) for the transition to the superconducting state increases when one suppresses the magnitude of the order parameter vertical bar Delta vertical bar in the attached superconducting leads. This effect is a consequence of the increased energy interval for diffusion of the “hot” nonequilibrium quasiparticles (induced by the oscillations of vertical bar Delta vertical bar in the center of the microbridge) to the leads. The effect is absent in short microbridges (with length less than the coherence length) and it is relatively weak in long microbridges (with length larger than the inelastic relaxation length of the nonequilibrium distribution function). A nonmonotonous dependence of I(r) on the length of the microbridge is predicted. Our results are important for the explanation of the enhancement of the critical current and the appearance of negative magnetoresistance observed in many recent experiments on superconducting microbridges or nanowires.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298863400005 Publication Date (up) 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education, under the Federal Target Programme “Scientific and Educational Personnel of Innovative Russia in 2009-2013” and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96235 Serial 1065
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 1 Pages 014502-014502,17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298985100002 Publication Date (up) 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96232 Serial 1155
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K.
Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 47 Issue 3 Pages 511-517
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000301994100001 Publication Date (up) 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited Open Access
Notes Approved Most recent IF: 2.446; 2012 IF: 1.913
Call Number UA @ lucian @ c:irua:97797 Serial 2727
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Electric field tuning of the band gap in four layers of graphene with different stacking order Type P1 Proceeding
Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal
Volume Issue Pages 84140-84148
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigated the effect of different stacking order of the four graphene layer system on the induced band gap when positively charged top and negatively charged back gates are applied to the system. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We show that the electric field does not open an energy gap if the multilayer graphene system contains a trilayer part with the ABA Bernal stacking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303856600012 Publication Date (up) 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume 8414 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the BelgianScience Policy (IAP). One of us (A.A.A.) was supported by a fellowship from the Belgian Federal Science Policy Office (BELSPO). ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113046 Serial 886
Permanent link to this record
 

 
Author Djotyan, A.P.; Avetisyan, A.A.; Hao, Y.L.; Peeters, F.M.
Title Shallow donor near a semiconductor surface in the presence of locally spherical scanning tunneling microscope tip Type P1 Proceeding
Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal
Volume Issue Pages 84140-84148
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We developed a variational approach to investigate the ground state energy and the extend of the wavefunction of a neutral donor located near a semiconductor surface in the presence of scanning tunneling microscope (STM) metallic tip. We apply the effective mass approximation and use a variational wavefunction that takes into account the influence of all image charges that arise due to the presence of a metallic tip. The behavior of the ground state energy when the tip approaches the semiconductor surface is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303856600020 Publication Date (up) 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume 8414 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (Belspo). ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113047 Serial 2987
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 23 Issue Pages 93-99
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000302887600017 Publication Date (up) 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 16 Open Access
Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M.
Title Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 1 Pages 012505-012505,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299867200001 Publication Date (up) 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the US Department of Energy (DOE) Grant No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges an individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM), where the focused-ion-beam milling was performed. M.L.L was a recipient of the NIU/ANL Distinguished Graduate Fellowship. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96224 Serial 3866
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodríguez, V.D.; Méndez-Ramos, J.; del- Castillo, J.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Optimizing Er/Yb ratio and content in Er-Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence Type A1 Journal article
Year 2012 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 100 Issue Pages 209-215
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Er3+Yb3+ co-doped transparent glass-ceramics with varying Er/Yb content and ratio have been prepared. High quantum yields for up- and down-conversion luminescence by energy transfer from Yb3+ to Er3+ and from Er3+ to Yb3+, respectively, have been detected and optimized with respect to the Er/Yb content and ratio, and proposed in particular for up- and down-conversion of solar spectrum for enhancement of the efficiency of solar cells. The rise and decay kinetics for the population of the excited levels of Er3+ and Yb3+ have been studied and fit. Based on these experimental data, the mechanisms for the energy transfers have been suggested with emphasis on the optimized Er/Yb content and ratio for enhancement of the efficiency of the Er3+↔Yb3+ energy transfers.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000303034700030 Publication Date (up) 2012-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 66 Open Access
Notes Fwo Approved Most recent IF: 4.784; 2012 IF: 4.630
Call Number UA @ lucian @ c:irua:97392 Serial 2493
Permanent link to this record
 

 
Author Bourgeois, J.; Hervieu, M.; Poienar, M.; Abakumov, A.M.; Elkaïm, E.; Sougrati, M.T.; Porcher, F.; Damay, F.; Rouquette, J.; Van Tendeloo, G.; Maignan, A.; Haines, J.; Martin, C.;
Title Evidence of oxygen-dependent modulation in LuFe2O4 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 6 Pages 064102-064120,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of LuFe2O4 has been investigated by means of powder synchrotron x-ray and neutron diffraction and transmission electron microscopy (TEM), along with Mössbauer spectroscopy and transport and magnetic properties. A monoclinic distortion is unambiguously evidenced, and the crystal structure is refined in the monoclinic C2/m space group [aM = 5.9563(1) Å, bM = 3.4372(1) Å, cM = 8.6431(1) Å, β = 103.24(1)°]. Along with the previously reported modulations distinctive of the charge-ordering (CO) of the iron species, a new type of incommensurate order is observed, characterized by a vector q⃗1 = α1a⃗M* + γ1c⃗M* (with α1 ≅ 0.55, γ1 ≅ 0.13). In situ heating TEM observations from 300 to 773 K confirm that the satellites associated with q⃗1 vanish completely, only at a temperature significantly higher than the CO temperature. This incommensurate modulation has a displacive character and corresponds primarily to a transverse displacive modulation wave of the Lu cations position, as revealed by the high resolution, high angle annular dark field scanning TEM images and in agreement with synchrotron data refinements. Analyses of vacuum-annealed samples converge toward the hypothesis of a new ordering mechanism, associated with a tiny oxygen deviation from the O4 stoichiometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299896900003 Publication Date (up) 2012-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes Hercules Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:95042 Serial 1095
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 156 Issue Pages 62-72
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000303625200010 Publication Date (up) 2012-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:96910 Serial 3466
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date (up) 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author Nayuk, R.; Zacher, D.; Schweins, R.; Wiktor, C.; Fischer, R.A.; Van Tendeloo, G.; Huber, K.
Title Modulated formation of MOF-5 nanoparticles : a SANS analysis Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 10 Pages 6127-6135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract MOF-5 nanoparticles were prepared by mixing a solution of [Zn4O(C6H5COO)(6)] with a solution of benzene-1,4-dicarboxylic acid in DMF at ambient conditions. The former species mimics as a secondary building unit (SBU), and the latter acts as linker. Mixing of the two solutions induced the formation of MOF-5 nanoparticles in dilute suspension. The applied conditions were identified as suitable for a closer investigation of the particle formation process by combined light and small angle neutron scattering (SANS). Scattering analysis revealed a significant impact of the molar ratio of the two components in the reaction mixture. Excessive use of the building unit slowed down the process. A similar effect was observed upon addition of 4n-decylbenzoic acid, which is supposed to act as a modulator. The formation mechanism leads to initial intermediates, which turn into cubelike nanoparticles with a diameter of about 60-80 nm. This initial stage is followed by an extended formation period, where nucleation proceeds over hours, leading to an increasing number of nanoparticles with the same final size of 60-80 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301509600020 Publication Date (up) 2012-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 24 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:97789 Serial 2163
Permanent link to this record