toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fabri, C.; Moretti, M.; Van Passel, S. pdf  doi
openurl 
  Title On the (ir)relevance of heatwaves in climate change impacts on European agriculture Type A1 Journal article
  Year 2022 Publication Climatic Change Abbreviated Journal Climatic Change  
  Volume 174 Issue 1-2 Pages 16-20  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The Ricardian model is a widely used approach based on cross-sectional regression analysis to estimate climate change impacts on agricultural productivity. Up until now, researchers have focused on the impacts of gradual changes in temperature and precipitation, even though climate change is known to encompass also changes in the severity and frequency of extreme weather events. This research investigates the impact of heatwaves on European agriculture, additional to the impact of average climate change. Using a dataset of more than 60,000 European farms, the study examines whether adding a measure for heatwaves to the Ricardian model influences its results. We find that heatwaves have a minor impact on agricultural productivity and that this impact is moderated by average temperature. In colder regions, farm productivity increases with the number of heatwave days. For warmer regions, land values decrease with heatwave frequency. Despite the moderating effect, the marginal effect of heatwave frequency, i.e. the percentage change in agricultural land values caused by one more heatwave day per year, is small in comparison to the effect of average temperature increases. Non-marginal effects are found to be relevant, but only in the case of increased heatwave frequency. According to our results, farms are not expected to suffer more from extreme weather than from mean climate change, as was claimed by several previous studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861873100002 Publication Date (up) 2022-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009; 1573-1480 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.8  
  Call Number UA @ admin @ c:irua:191483 Serial 7364  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Chacon, L.; Reynolds, A.M.; Lavoine, N.; Hakovirta, M.; Gonzalez, R.; Van Passel, S.; Venditti, R.A. pdf  url
doi  openurl
  Title Environmental sustainability perception toward obvious recovered waste content in paper-based packaging : an online and in-person survey best-worst scaling experiment Type A1 Journal article
  Year 2023 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 188 Issue Pages 106682-13  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract This study explores consumers' visual sustainability impressions of paper-based packaging that has incorporated obvious waste content. Two research questions were addressed concerning (i) the environmental sustainability perception of noticeable waste content in packaging and (ii) the impact of the presentation format (i.e., online versus in-person surveys) when studying these perceptions. Best-worst scaling experiments were conducted, which made respondents choose the 'most' and 'least' environmentally friendly package. Packages were designed using paperboard substrates blending either brown linerboard or white hardwood pulp with different recovered waste materials. The results showed that consumers perceive obvious waste-containing packaging as more environmentally friendly than classical packaging (with no visual waste). Samples with a brown base and agricultural waste were perceived as more sustainable compared to white packaging and the use of paper waste. In addition, the presentation format changed respondents' perception, and should therefore be carefully considered when designing surveys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867675200002 Publication Date (up) 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.2; 2023 IF: 3.313  
  Call Number UA @ admin @ c:irua:191509 Serial 7357  
Permanent link to this record
 

 
Author Larraín, M.; Billen, P.; Van Passel, S. pdf  doi
openurl 
  Title The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes : a partial equilibrium model Type A1 Journal article
  Year 2022 Publication Waste Management Abbreviated Journal Waste Manage  
  Volume 153 Issue Pages 355-366  
  Keywords A1 Journal article; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Extended producer responsibility (EPR) schemes have effectively increased the plastic waste that is separately collected. However, due to the structure of the recycling industry, EPR cannot increase recycling rates up to the target levels.Additional policy instruments to increase recycling rates such as recycled content targets, green dot fees bonus for recycled content, recycling targets and taxes on non-recycled plastic packaging have been discussed on a political level in the last years. However, very little research has quantitatively studied the effectiveness of these policy interventions.Using a partial equilibrium model, this paper examines the effectiveness of the implementation of the aforementioned policy instruments to increase recycling rates and the impact on different stakeholders of the value chain: plastic producers, consumers, producer responsibility organization and recyclers.Results show that direct interventions (recycled content standards and recycling targets) have the benefit of decoupling the recycling industry from external markets such as the oil market. They can be a good starting point to increase recycling, but in the long term they may be restricting by not presenting incentives to achieve recycling levels beyond the targeted amounts and by limiting technological innovation. On the contrary, eco-nomic interventions such as a green dot fee bonus or a packaging tax create economic incentives for recycling. However, these incentives are diminished by the lower perceived quality of packaging with higher recycled content levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868915000004 Publication Date (up) 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:191367 Serial 7370  
Permanent link to this record
 

 
Author Faust, V.; van Alen, T.A.; Op den Camp, H.J.M.; Vlaeminck, S.E.; Ganigué, R.; Boon, N.; Udert, K.M. url  doi
openurl 
  Title Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH Type A1 Journal article
  Year 2022 Publication Water Research X Abbreviated Journal  
  Volume 17 Issue Pages 100157-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Acid-tolerant ammonia-oxidizing bacteria (AOB) can open the door to new applications, such as partial nitritation at low pH. However, they can also be problematic because chemical nitrite oxidation occurs at low pH, leading to the release of harmful nitrogen oxide gases. In this publication, the role of acid-tolerant AOB in urine treatment was explored. On the one hand, the technical feasibility of ammonia oxidation under acidic conditions for source-separated urine with total nitrogen concentrations up to 3.5 g-N L−1 was investigated. On the other hand, the abundance and growth of acid-tolerant AOB at more neutral pH was explored. Under acidic conditions (pH of 5), ammonia oxidation rates of 500 mg-N L−1 d−1 and 10 g-N g-VSS-1 d-1 were observed, despite high concentrations of 15 mg-N L−1 of the AOB-inhibiting compound nitrous acid and low concentration of 0.04 mg-N L−1 of the substrate ammonia. However, ammonia oxidation under acidic conditions was very sensitive to process disturbances. Even short periods of less than 12 h without oxygen or without influent resulted in a complete cessation of ammonia oxidation with a recovery time of up to two months, which is a problem for low maintenance applications such as decentralized treatment. Furthermore, undesirable nitrogen losses of about 10% were observed. Under acidic conditions, a novel AOB strain was enriched with a relative abundance of up to 80%, for which the name “Candidatus (Ca.) Nitrosacidococcus urinae” is proposed. While Nitrosacidococcus members were present only to a small extent (0.004%) in urine nitrification reactors operated at pH values between 5.8 and 7, acid-tolerant AOB were always enriched during long periods without influent, resulting in an uncontrolled drop in pH to as low as 2.5. Long-term experiments at different pH values showed that the activity of “Ca. Nitrosacidococcus urinae” decreased strongly at a pH of 7, where they were also outcompeted by the acid-sensitive AOB Nitrosomonas halophila. The experiment results showed that the decreased activity of “Ca. Nitrosacidococcus urinae” correlated with the limited availability of dissolved iron at neutral pH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877925500001 Publication Date (up) 2022-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9147 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190944 Serial 7124  
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. url  doi
openurl 
  Title Clogging, diode and collective effects of skyrmions in funnel geometries Type A1 Journal article
  Year 2022 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 24 Issue 10 Pages 103030-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle-based model, we examine the collective dynamics of skyrmions interacting with a funnel potential under dc driving as the skyrmion density and relative strength of the Magnus and damping terms are varied. For driving in the easy direction, we find that increasing the skyrmion density reduces the average skyrmion velocity due to jamming of skyrmions near the funnel opening, while the Magnus force causes skyrmions to accumulate on one side of the funnel array. For driving in the hard direction, there is a critical skyrmion density below which the skyrmions become trapped. Above this critical value, a clogging effect appears with multiple depinning and repinning states where the skyrmions can rearrange into different clogged configurations, while at higher drives, the velocity-force curves become continuous. When skyrmions pile up near the funnel opening, the effective size of the opening is reduced and the passage of other skyrmions is blocked by the repulsive skyrmion-skyrmion interactions. We observe a strong diode effect in which the critical depinning force is higher and the velocity response is smaller for hard direction driving. As the ratio of Magnus force to dissipative term is varied, the skyrmion velocity varies in a non-linear and non-monotonic way due to the pile up of skyrmions on one side of the funnels. At high Magnus forces, the clogging effect for hard direction driving is diminished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000873333400001 Publication Date (up) 2022-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:192178 Serial 7287  
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F. url  doi
openurl 
  Title Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
  Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol  
  Volume 12 Issue 22 Pages 6676-6686  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865542600001 Publication Date (up) 2022-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5  
  Call Number UA @ admin @ c:irua:191389 Serial 7185  
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P. url  doi
openurl 
  Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
  Year 2022 Publication International journal of molecular sciences Abbreviated Journal  
  Volume 23 Issue 19 Pages 11867-12  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867759600001 Publication Date (up) 2022-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191566 Serial 8836  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 28 Issue Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date (up) 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date (up) 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal  
  Volume 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878212000001 Publication Date (up) 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H. pdf  doi
openurl 
  Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
  Year 2022 Publication Materials Today Nano Abbreviated Journal  
  Volume 20 Issue Pages 100275-5  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906548600002 Publication Date (up) 2022-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.3  
  Call Number UA @ admin @ c:irua:193477 Serial 7324  
Permanent link to this record
 

 
Author Dinger, J.; Friedrich, T.; Reimann, T.; Toepfer, J. url  doi
openurl 
  Title NiMn₂O₄ revisited : temperature-dependent cation distribution from in situ neutron diffraction and thermopower studies Type A1 Journal article
  Year 2023 Publication Journal of the American Ceramic Society Abbreviated Journal  
  Volume 106 Issue 3 Pages 1834-1847  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cation distribution of the negative temperature coefficient (NTC) thermistor spinel NiMn2O4 was studied in the temperature range from 55 to 900 degrees C, using a combined in situ neutron diffraction and thermopower study. Rietveld refinements of in situ neutron diffraction data reveal a temperature dependence of the degree of inversion with an inversion parameter of 0.70(1) at 900 degrees C and 0.87(1) at 55 degrees C. Thermopower measurements were evaluated using a modified Heikes formula, and the [Mn4+]/[Mn3+] ratio on octahedral sites of the spinel structure was calculated considering spin and orbital degeneracy. The inversion degree and disproportionation parameter, determined independently as function of temperature, were used to calculate the cation distribution of NiMn2O4 in the whole temperature range. At high temperature, within the stability range of the spinel, the cation distribution is characterized by a moderate degree of inversion with a concentration of NiB2+${\mathrm{Ni}}\mathrm{B}<  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880360600001 Publication Date (up) 2022-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 2.841  
  Call Number UA @ admin @ c:irua:192087 Serial 7326  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  url
doi  openurl
  Title Magnus induced diode effect for skyrmions in channels with periodic potentials Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 1 Pages 015804-15810  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -x direction driving and the lower wall for +x direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -x direction driving and the skyrmion velocity depends linearly on the drive. For +x direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -x direction driving, and become strongly trapped for +x direction driving. The preferred -x direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880827900001 Publication Date (up) 2022-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:192031 Serial 7320  
Permanent link to this record
 

 
Author Sauve, G.; Esguerra, J.L.; Laner, D.; Johansson, J.; Svensson, N.; Van Passel, S.; Van Acker, K. pdf  url
doi  openurl
  Title Integrated early-stage environmental and economic assessment of emerging technologies and its applicability to the case of plasma gasification Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 382 Issue Pages 134684-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Economic and environmental impact assessments are increasingly being adopted in the design and implementation of emerging systems. However, their emerging nature leads to several assessment challenges that need to be addressed to ensure the validity and usefulness of results in understanding their potential performance and supporting their development. There is the need to (i) account for spatial and temporal variability to allow a broader perspective at an early stage of development; (ii) handle uncertainties to systematically identify the critical factors and their interrelations that drive the results; (iii) integrate environmental and economic results to support sound decision-making based on two sustainability aspects. To address these assessment challenges, this study presents an alternative approach with the following corresponding features: (i) multiple scenario development to conduct an exploratory assessment of the systems under varying conditions and settings, (ii) global sensitivity analysis to identify the main critical factors and their interrelations, and (iii) trade-off and ecoefficiency analysis to integrate the economic and environmental results. The integrated approach is applied to a case study on plasma gasification for solid waste management. The results of the study highlight how the approach allows the identification of the dynamic relations between project settings and surrounding conditions. For example, the choice of gasifying agent largely depends on the background energy system, which dictates the impacts of the process energy requirement and the savings from the substituted energy of the syngas output. Based on these findings, the usefulness and validity of the proposed integrated approach are discussed in terms of how the key assessment challenges are addressed and how it can provide guidance for the development of emerging systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906664200001 Publication Date (up) 2022-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:193464 Serial 7361  
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O. url  doi
openurl 
  Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 10 Pages 104004-104013  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877514900005 Publication Date (up) 2022-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:192167 Serial 7346  
Permanent link to this record
 

 
Author Van Hal, M.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Photocatalytic soot degradation under UV and visible light Type A1 Journal article
  Year 2022 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Particulate matter is one of the most persistent global air pollutants that is causing health problems, climate disturbance and building deterioration. A sustainable technique that is able to degrade soot using (sun)light is photocatalysis. Currently, research on photocatalytic soot oxidation focusses on large band gap TiO2-based photocatalysts and thus requires the use of UV light. It would prove useful if visible light, and thus a larger fraction of the (freely available) solar spectrum, could additionally be utilised to drive this process. In this work, a visible light-active photocatalyst, WO3, is benchmarked to TiO2 under both UV and visible light. At the same time, the versatility and drastic improvement of a recently introduced digital image-based soot degradation detection method are demonstrated. An additional step correcting for non-soot related catalyst colour changes is applied, resulting in accurate detection and quantification of soot degradation for all studied photocatalysts, even for materials such as WO3 that are inherently coloured. With this study, we aim to broaden the scope of photocatalytic soot oxidation technology to visible light-active photocatalyst. Along with this study, we provide a versatile soot degradation detection methodology based on digital image analysis that is made widely applicable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000871854600010 Publication Date (up) 2022-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.8  
  Call Number UA @ admin @ c:irua:191275 Serial 7189  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date (up) 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Perreault, P.; Kummamuru, N.B.; Gonzalez Quiroga, A.; Lenaerts, S. pdf  url
doi  openurl
  Title CO2 capture initiatives : are governments, society, industry and the financial sector ready? Type A1 Journal article
  Year 2022 Publication Current Opinion in Chemical Engineering Abbreviated Journal Curr Opin Chem Eng  
  Volume 38 Issue Pages 100874  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The deployment of CCUS plants does not match the enormous requirements to meet the CO2 emission reductions fixed during the Paris agreement, and we must ask ourselves what is refraining the technology deployment, especially in light of the recent high CO2 prices. Owing to the higher costs than their fossil counterparts, Carbon Capture & Utilization represents a long-term solution. In addition to a gigantic scale-up effort even for the most mature Carbon Capture & Storage (CCS) technologies, various factors are responsible for the slow roll-out of CCS projects. Luckily, the financial sector and governments are playing their role. Support from the public is however key, and an open communication is required to convert social tolerance into social acceptance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885329800001 Publication Date (up) 2022-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6  
  Call Number UA @ admin @ c:irua:191272 Serial 7137  
Permanent link to this record
 

 
Author Cánovas, R.; Daems, E.; Langley, A.R.; De Wael, K. pdf  url
doi  openurl
  Title Are aptamer-based biosensing approaches a good choice for female fertility monitoring? A comprehensive review Type A1 Journal article
  Year 2023 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 220 Issue Pages 114881-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The WHO estimates that 8–10% of couples are facing fertility problems, often due to inaccuracy in predicting the female's ovulation period controlled by four key hormones. The quantification and monitoring of such key hormones are crucial for the early identification of infertility, but also in improving therapeutic management associated with hormonal imbalance. In this review, we extensively summarize and discuss: i) drawbacks of laboratory methods for fertility testing (costly, invasive, complex) and commercially available point-of-care tests (measuring only one/two of the four key hormones), ii) the understanding of different biosensors for fertility monitoring, and iii) an in-depth classification and overview of aptamer-based sensing of the hormones of interest. This review provides insights on hormone detection strategies for fertility, with a focus on the classification of the current ‘aptasensing’ strategies, aiming to assist as a basic guide for the development of accurate fertility window monitoring tools based on aptamers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000890547600004 Publication Date (up) 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.6; 2023 IF: 7.78  
  Call Number UA @ admin @ c:irua:191711 Serial 8833  
Permanent link to this record
 

 
Author Debie, Y.; van Audenaerde, J.R.M.; Vandamme, T.; Croes, L.; Teuwen, L.-A.; Verbruggen, L.; Vanhoutte, G.; Marcq, E.; Verheggen, L.; Le Blon, D.; Peeters, B.; Goossens, M.; Pannus, P.; Ariën, K.K.; Anguille, S.; Janssens, A.; Prenen, H.; Smits, E.L.J.; Vulsteke, C.; Lion, E.; Peeters, M.; Van Dam, P.A. pdf  url
doi  openurl
  Title Humoral and cellular immune responses against SARS-CoV-2 after third dose BNT162b2 following double-dose vaccination with BNT162b2 versus ChAdOx1 in patients with cancer Type University Hospital Antwerp
  Year 2023 Publication Clinical cancer research Abbreviated Journal  
  Volume 29 Issue 3 Pages 635-646  
  Keywords University Hospital Antwerp; A1 Journal article; Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Purpose: Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine fromthe one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. Experimental Design: A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARSCoV- 2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4þ and CD8þ T-cell responses against SARS-CoV-2–specific S1 and S2 peptides. Results: Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95–2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48–1,977.46)]. However, homologous- boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8þ T cells, including higher IFNg and TNFa levels. Conclusions: In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000928414200001 Publication Date (up) 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-0432; 1557-3265 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access  
  Notes Approved Most recent IF: 11.5; 2023 IF: 9.619  
  Call Number UA @ admin @ c:irua:192500 Serial 9207  
Permanent link to this record
 

 
Author Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date (up) 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. url  doi
openurl 
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 157 Issue 18 Pages 184113-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885260600002 Publication Date (up) 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:192076 Serial 7266  
Permanent link to this record
 

 
Author Yao, W.; Niinemets, Ü.; Yao, W.; Gielis, J.; Schrader, J.; Yu, K.; Shi, P. url  doi
openurl 
  Title Comparison of two simplified versions of the Gielis equation for describing the shape of bamboo leaves Type A1 Journal article
  Year 2022 Publication Plants Abbreviated Journal  
  Volume 11 Issue 22 Pages 3058-11  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bamboo is an important component in subtropical and tropical forest communities. The plant has characteristic long lanceolate leaves with parallel venation. Prior studies have shown that the leaf shapes of this plant group can be well described by a simplified version (referred to as SGE-1) of the Gielis equation, a polar coordinate equation extended from the superellipse equation. SGE-1 with only two model parameters is less complex than the original Gielis equation with six parameters. Previous studies have seldom tested whether other simplified versions of the Gielis equation are superior to SGE-1 in fitting empirical leaf shape data. In the present study, we compared a three-parameter Gielis equation (referred to as SGE-2) with the two-parameter SGE-1 using the leaf boundary coordinate data of six bamboo species within the same genus that have representative long lanceolate leaves, with >300 leaves for each species. We sampled 2000 data points at approximately equidistant locations on the boundary of each leaf, and estimated the parameters for the two models. The root–mean–square error (RMSE) between the observed and predicted radii from the polar point to data points on the boundary of each leaf was used as a measure of the model goodness of fit, and the mean percent error between the RMSEs from fitting SGE-1 and SGE-2 was used to examine whether the introduction of an additional parameter in SGE-1 remarkably improves the model’s fitting. We found that the RMSE value of SGE-2 was always smaller than that of SGE-1. The mean percent errors among the two models ranged from 7.5% to 20% across the six species. These results indicate that SGE-2 is superior to SGE-1 and should be used in fitting leaf shapes. We argue that the results of the current study can be potentially extended to other lanceolate leaf shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000887783400001 Publication Date (up) 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191859 Serial 7289  
Permanent link to this record
 

 
Author De Kerf, T.; Gestels, A.; Janssens, K.; Scheunders, P.; Steenackers, G.; Vanlanduit, S. url  doi
openurl 
  Title Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging Type A1 Journal article
  Year 2022 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 12 Issue 50 Pages 32775-32783  
  Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: alpha-FeO(OH) (goethite), gamma-FeO(OH) (lepidocrocite), and gamma-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885554600001 Publication Date (up) 2022-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192085 Serial 7334  
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C. url  doi
openurl 
  Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 19 Pages 195204-195210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918954800001 Publication Date (up) 2022-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194384 Serial 7290  
Permanent link to this record
 

 
Author Li, C.-F.; Chen, L.-D.; Wu, L.; Liu, Y.; Hu, Z.-Y.; Cui, W.-J.; Dong, W.-D.; Liu, X.; Yu, W.-B.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Directly revealing the structure-property correlation in Na+-doped cathode materials Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 612 Issue Pages 155810-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The introduction of Na+ is considered as an effective way to improve the performance of Ni-rich cathode materials. However, the direct structure-property correlation for Na+ doped NCM-based cathode materials remain unclear, due to the difficulty of local and accurate structural characterization for light elements such as Li and Na. Moreover, there is the complexity of the modeling for the whole Li ion battery (LIB) system. To tackle the above-mentioned issues, we prepared Na+-doped LiNi0.6Co0.2Mn0.2O2 (Na-NCM622) material. The crystal structure change and the lattice distortion with picometers precision of the Na+-doped material is revealed by Cs-corrected scanning transmission electron microscopy (STEM). Density functional theory (DFT) and the recently proposed electrochemical model, i.e., modified Planck-Nernst-Poisson coupled Frumkin-Butler-Volmer (MPNP-FBV), has been applied to reveal correlations between the activation energy and the charge transfer resistance at multiscale. It is shown that Na+ doping can reduce the activation energy barrier from. G = 1.10 eV to 1.05 eV, resulting in a reduction of the interfacial resistance from 297 O to 134 Omega. Consequently, the Na-NCM622 cathode delivers a superior capacity retention of 90.8 % (159 mAh.g(-1)) after 100 cycles compared to the pristine NCM622 (67.5 %, 108 mAh.g(-1)). Our results demonstrate that the kinetics of Li+ diffusion and the electrochemical reaction can be enhanced by Na+ doping the cathode material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892940300001 Publication Date (up) 2022-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number UA @ admin @ c:irua:192758 Serial 7296  
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P. url  doi
openurl 
  Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
  Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 12 Pages 2475-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904525700001 Publication Date (up) 2022-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:191860 Serial 7301  
Permanent link to this record
 

 
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K. url  doi
openurl 
  Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 23 Pages 4153-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000896093900001 Publication Date (up) 2022-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:191843 Serial 7341  
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V. pdf  url
doi  openurl
  Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102516-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901694900001 Publication Date (up) 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:193502 Serial 7327  
Permanent link to this record
 

 
Author Nematollahi, P. pdf  url
doi  openurl
  Title Selectivity of Mo-NC sites for electrocatalytic N₂ reduction : a function of the single atom position on the surface and local carbon topologies Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 612 Issue Pages 155908-155909  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transition metal (TM) doped two-dimensional single-atom catalysts are known as a promising class of catalysts for electrocatalytic gas conversion. However, the detailed mechanisms that occur at the surface of these catalysts are still unknown. In the present work, we simulate three Mo-doped nitrogenated graphene structures. In each catalyst, the position of the Mo active site and the corresponding local carbon topologies are different, i.e. MoN4C10 with in-plane Mo atom, MoN4C8 in which Mo atom bridges two adjacent armchair-like graphitic edges, and MoN2C3 in which Mo is doped at the edge of the graphene sheet. Using Density Functional Theory (DFT) calculations we discuss the electrocatalytic activity of Mosingle bondNsingle bondC structures for nitrogen reduction reaction (NRR) with a focus on unraveling the corresponding mechanisms concerning different Mo site positions and C topologies. Our results indicate that the position of the active site centers has a great effect on its electrocatalytic behavior. The gas phase N2 efficiently reduces to ammonia on MoN4C8 via the distal mechanism with an onset potential of −0.51 V. We confirm that the proposed pyridinic structure, MoN4C8, can catalyze NRR effectively with a low overpotential of 0.35 V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901469900003 Publication Date (up) 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number UA @ admin @ c:irua:192430 Serial 7275  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: